Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 947: 303-324, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28168672

RESUMO

The particular properties of nanomaterials have led to their rapidly increasing use in diverse fields of application. However, safety assessment is not keeping pace and there are still gaps in the understanding of their hazards. Computational models predicting nanotoxicity, such as (quantitative) structure-activity relationships ((Q)SARs), can contribute to safety evaluation, in line with general efforts to apply alternative methods in chemical risk assessment. Their development is highly dependent on the availability of reliable and high quality experimental data, both regarding the compounds' properties as well as the measured toxic effects. In particular, "nano-QSARs" should take the nano-specific characteristics into account. The information compiled needs to be well organized, quality controlled and standardized. Integrating the data in an overarching, structured data collection aims to (a) organize the data in a way to support modelling, (b) make (meta)data necessary for modelling available, and (c) add value by making a comparison between data from different sources possible.Based on the available data, specific descriptors can be derived to parameterize the nanomaterial-specific structure and physico-chemical properties appropriately. Furthermore, the interactions between nanoparticles and biological systems as well as small molecules, which can lead to modifications of the structure of the active nanoparticles, need to be described and taken into account in the development of models to predict the biological activity and toxicity of nanoparticles. The EU NanoPUZZLES project was part of a global cooperative effort to advance data availability and modelling approaches supporting the characterization and evaluation of nanomaterials.


Assuntos
Nanopartículas/efeitos adversos , Nanopartículas/química , Simulação por Computador , Humanos , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Relação Quantitativa Estrutura-Atividade , Medição de Risco
2.
Environ Health Perspect ; 125(7): 077012, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28886606

RESUMO

BACKGROUND: Combining computational toxicology with ExpoCast exposure estimates and ToxCast™ assay data gives us access to predictions of human health risks stemming from exposures to chemical mixtures. OBJECTIVES: We explored, through mathematical modeling and simulations, the size of potential effects of random mixtures of aromatase inhibitors on the dynamics of women's menstrual cycles. METHODS: We simulated random exposures to millions of potential mixtures of 86 aromatase inhibitors. A pharmacokinetic model of intake and disposition of the chemicals predicted their internal concentration as a function of time (up to 2 y). A ToxCast™ aromatase assay provided concentration-inhibition relationships for each chemical. The resulting total aromatase inhibition was input to a mathematical model of the hormonal hypothalamus-pituitary-ovarian control of ovulation in women. RESULTS: Above 10% inhibition of estradiol synthesis by aromatase inhibitors, noticeable (eventually reversible) effects on ovulation were predicted. Exposures to individual chemicals never led to such effects. In our best estimate, ∼10% of the combined exposures simulated had mild to catastrophic impacts on ovulation. A lower bound on that figure, obtained using an optimistic exposure scenario, was 0.3%. CONCLUSIONS: These results demonstrate the possibility to predict large-scale mixture effects for endocrine disrupters with a predictive toxicology approach that is suitable for high-throughput ranking and risk assessment. The size of the effects predicted is consistent with an increased risk of infertility in women from everyday exposures to our chemical environment. https://doi.org/10.1289/EHP742.


Assuntos
Inibidores da Aromatase/metabolismo , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Ciclo Menstrual/efeitos dos fármacos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Modelos Teóricos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA