Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 14: 69, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23444904

RESUMO

BACKGROUND: DNA microarrays have become ubiquitous in biological and medical research. The most difficult problem that needs to be solved is the design of DNA oligonucleotides that (i) are highly specific, that is, bind only to the intended target, (ii) cover the highest possible number of genes, that is, all genes that allow such unique regions, and (iii) are computed fast. None of the existing programs meet all these criteria. RESULTS: We introduce a new approach with our software program BOND (Basic OligoNucleotide Design). According to Kane's criteria for oligo design, BOND computes highly specific DNA oligonucleotides, for all the genes that admit unique probes, while running orders of magnitude faster than the existing programs. The same approach enables us to introduce also an evaluation procedure that correctly measures the quality of the oligonucleotides. Extensive comparison is performed to prove our claims. BOND is flexible, easy to use, requires no additional software, and is freely available for non-commercial use from http://www.csd.uwo.ca/∼ilie/BOND/. CONCLUSIONS: We provide an improved solution to the important problem of oligonucleotide design, including a thorough evaluation of oligo design programs. We hope BOND will become a useful tool for researchers in biological and medical sciences by making the microarray procedures faster and more accurate.


Assuntos
Oligonucleotídeos/química , Software , Algoritmos , Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , Oligonucleotídeos/genética
3.
Cell Rep Methods ; 1(6): 100069, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35474894

RESUMO

The compounding challenges of low signal, high background, and uncertain targets plague many metagenomic sequencing efforts. One solution has been DNA capture, wherein probes are designed to hybridize with target sequences, enriching them in relation to their background. However, balancing probe depth with breadth of capture is challenging for diverse targets. To find this balance, we have developed the HUBDesign pipeline, which makes use of sequence homology to design probes at multiple taxonomic levels. This creates an efficient probe set capable of simultaneously and specifically capturing known and related sequences. We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 in a human RNA background and seven bacterial strains in human blood. HUBDesign (https://github.com/zacherydickson/HUBDesign) has broad applicability wherever there are multiple organisms of interest.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Metagenoma , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA