Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 65(11): e0116821, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460301

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infections of surgically implanted subcutaneous vascular catheters (SISVCs) cause serious morbidity in patients with chronic illnesses. Previous in vitro and murine models demonstrated the synergistic interaction of equimolar concentrations of meropenem/piperacillin/tazobactam (MPT) (VIO-001) against MRSA infection. We investigated the pharmacokinetics (PK) and efficacy of VIO-001 for the treatment of MRSA bacteremia in immunocompetent rabbits with SISVCs. In PK studies, we determined that optimal dosing to achieve a time above 4× MIC (T>4×MIC) of a duration of 3 to 3.30 h required a 1-h infusion with every-4-h (Q4h) dosing. Study groups in efficacy experiments consisted of MPT combinations of 100/150/100 mg/kg of body weight (MPT100), 200/300/200 mg/kg (MPT200), and 400/600/400 mg/kg (MPT400); vancomycin (VAN) at 15 mg/kg; and untreated controls (UC). The inoculum of MRSA isolate USA300-TCH1516 (1 × 103 organisms) was administered via the SISCV on day 1 and locked for 24 h. The 8-day therapy started at 24 h postinoculation. There was a significant reduction of MRSA in blood cultures from the SISVCs in all treatment groups, with full clearance on day 4, versus UCs (P < 0.05). Consistent with the clearance of SISVC-related infection, full eradication of MRSA was achieved in lungs, heart, liver, spleen, and kidneys at the end of the study versus UC (P < 0.01). These results strongly correlated with time-kill data, where MPT in the range of 4/6/4 µg/ml to 32/48/32 µg/ml demonstrated a significant 6-log decrease in the bacterial burden versus UC (P < 0.01). In summary, VIO-001 demonstrated a favorable PK/pharmacodynamic (PD) profile and activity against SISCV MRSA infection, bacteremia, and disseminated infection. This rabbit model provides a new system for understanding new antimicrobial agents against MRSA SISVC-related infection, and these data provide a basis for future clinical investigation.


Assuntos
Antibacterianos/farmacocinética , Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Dispositivos de Acesso Vascular , Animais , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Meropeném , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam/farmacocinética , Combinação Piperacilina e Tazobactam/uso terapêutico , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Distribuição Tecidual
2.
Nucleic Acids Res ; 44(5): 2240-54, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26837573

RESUMO

Lignin-derived (e.g. phenolic) compounds can compromise the bioconversion of lignocellulosic biomass to fuels and chemicals due to their toxicity and recalcitrance. The lipid-accumulating bacterium Rhodococcus opacus PD630 has recently emerged as a promising microbial host for lignocellulose conversion to value-added products due to its natural ability to tolerate and utilize phenolics. To gain a better understanding of its phenolic tolerance and utilization mechanisms, we adaptively evolved R. opacus over 40 passages using phenol as its sole carbon source (up to 373% growth improvement over wild-type), and extensively characterized two strains from passages 33 and 40. The two adapted strains showed higher phenol consumption rates (∼20 mg/l/h) and ∼2-fold higher lipid production from phenol than the wild-type strain. Whole-genome sequencing and comparative transcriptomics identified highly-upregulated degradation pathways and putative transporters for phenol in both adapted strains, highlighting the important linkage between mechanisms of regulated phenol uptake, utilization, and evolved tolerance. Our study shows that the R. opacus mutants are likely to use their transporters to import phenol rather than export them, suggesting a new aromatic tolerance mechanism. The identified tolerance genes and pathways are promising candidates for future metabolic engineering in R. opacus for improved lignin conversion to lipid-based products.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Regulação Bacteriana da Expressão Gênica , Fenóis/metabolismo , Rhodococcus/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Carbono/metabolismo , Proteínas de Transporte/metabolismo , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Lipogênese/genética , Anotação de Sequência Molecular , Rhodococcus/metabolismo , Transcriptoma
3.
J Immunol ; 188(5): 2057-63, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345702

RESUMO

Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated ß-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.


Assuntos
Comunicação Celular/imunologia , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Multimerização Proteica/imunologia , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Células Cultivadas , Espaço Intracelular/química , Subpopulações de Linfócitos/química , Camundongos , Camundongos Knockout , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais/imunologia , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/deficiência
4.
Biochimie ; 178: 158-169, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659445

RESUMO

Uncommon lipids in biotechnologically important Corynebacterium glutamicum and pathogen Corynebacterium striatum in genus Corynebacterium are isolated and identified by linear ion-trap multiple stage mass spectrometry (LIT MSn) with high resolution mass measurement. We redefined several lipid structures that were previously mis-assigned or not defined, including cytidine diphosphate diacylglycerol (CDP-DAG), glucuronosyl diacylglycerol (GlcA-DAG), (α-d-mannopyranosyl)-(1 â†’ 4)-(α-D-glucuronyl diacyglycerol (Man-GlcA-DAG), 1-mycolyl-2-acyl-phosphatidylglycerol (MA-PG), acyl trehalose monomycolate (acyl-TMM). We also report the structures of mycolic acid, phosphatidylglycerol, phosphatidylinositol, cardiolipin, trehalose dimycolate lipids in which many isomeric structures are present. The LIT MSn approaches afford identification of the functional group, the fatty acid substituents and their regiospecificity in the molecules, revealing the biodiversities of the lipid species in two Corynebacterium strains that have played very different and important roles in human nutrition and health.


Assuntos
Corynebacterium glutamicum/química , Corynebacterium/química , Lipídeos/química , Lipídeos/isolamento & purificação , Fatores Corda/química , Diglicerídeos/química , Humanos , Metabolismo dos Lipídeos , Lipídeos/classificação , Fosfatidilgliceróis/química , Espectrometria de Massas por Ionização por Electrospray
5.
mSphere ; 3(4)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089649

RESUMO

Daptomycin, a last-line-of-defense antibiotic for treating Gram-positive infections, is experiencing clinical failure against important infectious agents, including Corynebacterium striatum The recent transition of daptomycin to generic status is projected to dramatically increase availability, use, and clinical failure. Here we confirm the genetic mechanism of high-level daptomycin resistance (HLDR; MIC = >256 µg/ml) in C. striatum, which evolved within a patient during daptomycin therapy, a phenotype recapitulated in vitro In all 8 independent cases tested, loss-of-function mutations in phosphatidylglycerol synthase (pgsA2) were necessary and sufficient for high-level daptomycin resistance. Through lipidomic and biochemical analysis, we demonstrate that daptomycin's activity is dependent on the membrane phosphatidylglycerol (PG) concentration. Until now, the verification of PG as the in vivo target of daptomycin has proven difficult since tested cell model systems were not viable without membrane PG. C. striatum becomes daptomycin resistant at a high level by removing PG from the membrane and changing the membrane composition to maintain viability. This work demonstrates that loss-of-function mutation in pgsA2 and the loss of membrane PG are necessary and sufficient to produce high-level resistance to daptomycin in C. striatumIMPORTANCE Antimicrobial resistance threatens the efficacy of antimicrobial treatment options, including last-line-of-defense drugs. Understanding how this resistance develops can help direct antimicrobial stewardship efforts and is critical to designing the next generation of antimicrobial therapies. Here we determine how Corynebacterium striatum, a skin commensal and opportunistic pathogen, evolved high-level resistance to a drug of last resort, daptomycin. Through a single mutation, this pathogen was able to remove the daptomycin's target, phosphatidylglycerol (PG), from the membrane and evade daptomycin's bactericidal activity. We found that additional compensatory changes were not necessary to support the removal of PG and replacement with phosphatidylinositol (PI). The ease with which C. striatum evolved high-level resistance is cause for alarm and highlights the importance of screening new antimicrobials against a wide range of clinical pathogens which may harbor unique capacities for resistance evolution.


Assuntos
Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Daptomicina/farmacologia , Farmacorresistência Bacteriana , Antibacterianos/uso terapêutico , Membrana Celular/química , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Infecções por Corynebacterium/tratamento farmacológico , Infecções por Corynebacterium/microbiologia , Daptomicina/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Fosfatidilgliceróis/análise , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Transferases (Outros Grupos de Fosfato Substituídos)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA