Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Renal Physiol ; 317(5): F1398-F1403, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31588797

RESUMO

Our current knowledge of the properties of renal ion channels responsible for electrolytes and cell energy homeostasis mainly relies on rodent studies. However, it has not been established yet to what extent their characteristics can be generalized to those of humans. The present study was designed to develop a standardized protocol for the isolation of well-preserved glomeruli and renal tubules from rodent and human kidneys and to assess the functional suitability of the obtained materials for physiological studies. Separation of nephron segments from human and rodent kidneys was achieved using a novel vibrodissociation technique. The integrity of isolated renal tubules and glomeruli was probed via electrophysiological analysis and fluorescence microscopy, and the purity of the collected fractions was confirmed using quantitative RT-PCR with gene markers for specific cell types. The developed approach allows rapid isolation of well-preserved renal tubules and glomeruli from human and rodent kidneys amenable for electrophysiological, Ca2+ imaging, and omics studies. Analysis of the basic electrophysiological parameters of major K+ and Na+ channels expressed in human cortical collecting ducts revealed that they exhibited similar biophysical properties as previously reported in rodent studies. Using vibrodissociation for nephron segment isolation has several advantages over existing techniques: it is less labor intensive, requires little to no enzymatic treatment, and produces large quantities of well-preserved experimental material in pure fractions. Applying this method for the separation of nephron segments from human and rodent kidneys may be a powerful tool for the indepth assessment of kidney function in health and disease.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Néfrons , Animais , Cálcio/metabolismo , Humanos , Camundongos , Ratos , Ratos Endogâmicos Dahl , Vibração
2.
Kidney360 ; 4(12): 1816-1823, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37927032

RESUMO

Opioids are a class of medications used in pain management. Unfortunately, long-term use, overprescription, and illicit opioid use have led to one of the greatest threats to mankind: the opioid crisis. Accompanying the classical analgesic properties of opioids, opioids produce a myriad of effects including euphoria, immunosuppression, respiratory depression, and organ damage. It is essential to ascertain the physiological role of the opioid/opioid receptor axis to gain an in-depth understanding of the effects of opioid use. This knowledge will aid in the development of novel therapeutic interventions to combat the increasing mortality rate because of opioid misuse. This review describes the current knowledge of opioids, including the opioid epidemic and opioid/opioid receptor physiology. Furthermore, this review intricately relates opioid use to kidney damage, navigates kidney structure and physiology, and proposes potential ways to prevent opioid-induced kidney damage.


Assuntos
Analgésicos Opioides , Transtornos Relacionados ao Uso de Opioides , Humanos , Analgésicos Opioides/efeitos adversos , Transtornos Relacionados ao Uso de Opioides/epidemiologia , Transtornos Relacionados ao Uso de Opioides/complicações , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Epidemia de Opioides , Receptores Opioides , Rim
3.
Function (Oxf) ; 4(5): zqad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575477

RESUMO

We identified Rho-related BTB domain containing 1 (RhoBTB1) as a key regulator of phosphodiesterase 5 (PDE5) activity, and through PDE5, a regulator of vascular tone. We identified the binding interface for PDE5 on RhoBTB1 by truncating full-length RhoBTB1 into its component domains. Co-immunoprecipitation analyses revealed that the C-terminal half of RhoBTB1 containing its two BTB domains and the C-terminal domain (B1B2C) is the minimal region required for PDE5 recruitment and subsequent proteasomal degradation via Cullin-3 (CUL3). The C-terminal domain was essential in recruiting PDE5 as constructs lacking this region could not participate in PDE5 binding or proteasomal degradation. We also identified Pro353 and Ser363 as key amino acid residues in the B1B2C region involved in CUL3 binding to RhoBTB1. Mutation of either of these residues exhibited impaired CUL3 binding and PDE5 degradation, although the binding to PDE5 was preserved. Finally, we employed ascorbate peroxidase 2 (APEX2) proximity labeling using a B1B2C-APEX2 fusion protein as bait to capture unknown RhoBTB1 binding partners. Among several B1B2C-binding proteins identified and validated, we focused on SET domain containing 2 (SETD2). SETD2 and RhoBTB1 directly interacted, and the level of SETD2 increased in response to pharmacological inhibition of the proteasome or Cullin complex, CUL3 deletion, and RhoBTB1-inhibition with siRNA. This suggests that SETD2 is regulated by the RhoBTB1-CUL3 axis. Future studies will determine whether SETD2 plays a role in cardiovascular function.


Assuntos
Proteínas Culina , Complexo de Endopeptidases do Proteassoma , Proteínas Culina/genética , Complexo de Endopeptidases do Proteassoma/genética , Especificidade por Substrato , Ubiquitinação
4.
Sci Rep ; 12(1): 6080, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413977

RESUMO

Cannabinoids and their endogenous and synthetic analogs impact blood pressure and contribute to the incidence of hypertension. It was previously reported that the endocannabinoid system plays an important role in developing hypertension; however, it was also shown that cannabinoids elicit profound hypotension associated with hemorrhagic, cardiogenic, and endotoxic shock. This study aimed to test acute and chronic effects of an endogenous ligand of cannabinoid receptor anandamide (AEA) on blood pressure and kidney injury in vivo in conscious Dahl salt-sensitive (SS) rats. We demonstrated that acute i.v. bolus administration of a low or a high doses (0.05 or 3 mg/kg) of AEA did not affect blood pressure for 2 h after the injection in Dahl SS rats fed a normal salt diet (0.4% NaCl). Neither low nor high doses of AEA had any beneficial effects on blood pressure or kidney function. Furthermore, hypertensive rats fed a HS diet (8% NaCl) and chronically treated with 3 mg/kg of AEA exhibited a significant increase in blood pressure accompanied by increased renal interstitial fibrosis and glomerular damage at the late stage of hypertension. Western blot analyses revealed increased expression of Smad3 protein levels in the kidney cortex in response to chronic treatment with a high AEA dose. Therefore, TGF-ß1/Smad3 signaling pathway may play a crucial role in kidney injury in SS hypertension during chronic treatment with AEA. Collectively, these data indicate that prolonged stimulation of cannabinoid receptors may result in aggravation of hypertension and kidney damage.


Assuntos
Canabinoides , Hipertensão , Nefropatias , Animais , Pressão Sanguínea/fisiologia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Rim/metabolismo , Ratos , Ratos Endogâmicos Dahl , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia
5.
Nat Commun ; 13(1): 4099, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835746

RESUMO

Hypertension and kidney disease have been repeatedly associated with genomic variants and alterations of lysine metabolism. Here, we combined stable isotope labeling with untargeted metabolomics to investigate lysine's metabolic fate in vivo. Dietary 13C6 labeled lysine was tracked to lysine metabolites across various organs. Globally, lysine reacts rapidly with molecules of the central carbon metabolism, but incorporates slowly into proteins and acylcarnitines. Lysine metabolism is accelerated in a rat model of hypertension and kidney damage, chiefly through N-alpha-mediated degradation. Lysine administration diminished development of hypertension and kidney injury. Protective mechanisms include diuresis, further acceleration of lysine conjugate formation, and inhibition of tubular albumin uptake. Lysine also conjugates with malonyl-CoA to form a novel metabolite Nε-malonyl-lysine to deplete malonyl-CoA from fatty acid synthesis. Through conjugate formation and excretion as fructoselysine, saccharopine, and Nε-acetyllysine, lysine lead to depletion of central carbon metabolites from the organism and kidney. Consistently, lysine administration to patients at risk for hypertension and kidney disease inhibited tubular albumin uptake, increased lysine conjugate formation, and reduced tricarboxylic acid (TCA) cycle metabolites, compared to kidney-healthy volunteers. In conclusion, lysine isotope tracing mapped an accelerated metabolism in hypertension, and lysine administration could protect kidneys in hypertensive kidney disease.


Assuntos
Hipertensão , Rim , Lisina , Albuminas/metabolismo , Animais , Carbono/metabolismo , Modelos Animais de Doenças , Hipertensão/metabolismo , Rim/metabolismo , Lisina/metabolismo , Malonil Coenzima A/metabolismo , Ratos
6.
Life Sci Alliance ; 3(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046522

RESUMO

Opioid use is associated with predictors of poor cardiorenal outcomes. However, little is known about the direct impact of opioids on podocytes and renal function, especially in the context of hypertension and CKD. We hypothesize that stimulation of opioid receptors (ORs) contributes to dysregulation of intracellular calcium ([Ca2+]i) homeostasis in podocytes, thus aggravating the development of renal damage in hypertensive conditions. Herein, freshly isolated glomeruli from Dahl salt-sensitive (SS) rats and human kidneys, as well as immortalized human podocytes, were used to elucidate the contribution of specific ORs to calcium influx. Stimulation of κ-ORs, but not µ-ORs or δ-ORs, evoked a [Ca2+]i transient in podocytes, potentially through the activation of TRPC6 channels. κ-OR agonist BRL52537 was used to assess the long-term effect in SS rats fed a high-salt diet. Hypertensive rats chronically treated with BRL52537 exhibited [Ca2+]i overload in podocytes, nephrinuria, albuminuria, changes in electrolyte balance, and augmented blood pressure. These data demonstrate that the κ-OR/TRPC6 signaling directly influences podocyte calcium handling, provoking the development of kidney injury in the opioid-treated hypertensive cohort.


Assuntos
Analgésicos Opioides/metabolismo , Rim/patologia , Podócitos/metabolismo , Analgésicos Opioides/farmacologia , Animais , Cálcio/metabolismo , Humanos , Hipertensão/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Masculino , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Ratos , Ratos Endogâmicos Dahl , Transdução de Sinais/efeitos dos fármacos , Cloreto de Sódio na Dieta/farmacologia , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA