Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806322

RESUMO

Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.


Assuntos
Proteínas de Choque Térmico Pequenas , Animais , Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Mamíferos/metabolismo , Lipídeos de Membrana/química , Membranas/metabolismo , Fosfolipídeos
2.
Biochim Biophys Acta Bioenerg ; 1859(9): 958-974, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29655782

RESUMO

Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 µM), reduced cancer cell proliferation (by 10-20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/ß-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Bactérias/metabolismo , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Detergentes/farmacologia , Ácido Litocólico/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Commun Signal ; 16(1): 51, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157875

RESUMO

BACKGROUND: The outcome of cancer therapy is greatly defined by the ability of a tumor cell to evade treatment and re-establish its bulk mass after medical interventions. Consequently, there is an urgent need for the characterization of molecules affecting tumor reoccurrence. The phosphatase of regenerating liver 3 (PRL3) protein was recently emerged among the targets that could affect such a phenomenon. METHODS: The expression induction of PRL3 in melanoma cells treated with chemotherapeutic agents was assessed by western blotting. The effect of PRL3 expression on cancer growth was investigated both in vitro and in vivo. The association of PRL3 with the caveolae structures of the plasma membrane was analyzed by detergent free raft purification. The effect of PRL3 expression on the membrane organization was assayed by electron microscopy and by membrane biophysical measurements. Purification of the plasma membrane fraction and co-immunoprecipitation were used to evaluate the altered protein composition of the plasma membrane upon PRL3 expression. RESULTS: Here, we identified PRL3 as a genotoxic stress-induced oncogene whose expression is significantly increased by the presence of classical antitumor therapeutics. Furthermore, we successfully connected the presence of this oncogene with increased tumor growth, which implies that tumor cells can utilize PRL3 effects as a survival strategy. We further demonstrated the molecular mechanism that is connected with the pro-growth action of PRL3, which is closely associated with its localization to the caveolae-type lipid raft compartment of the plasma membrane. In our study, PRL3 was associated with distinct changes in the plasma membrane structure and in the caveolar proteome, such as the dephosphorylation of integrin ß1 at Thr788/Thr789 and the increased partitioning of Rac1 to the plasma membrane. These alterations at the plasma membrane were further associated with the elevation of cyclin D1 in the nucleus. CONCLUSIONS: This study identifies PRL3 as an oncogene upregulated in cancer cells upon exposure to anticancer therapeutics. Furthermore, this work contributes to the existing knowledge on PRL3 function by characterizing its association with the caveolae-like domains of the plasma membrane and their resident proteins.


Assuntos
Cavéolas/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/patologia , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Cavéolas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
Biochim Biophys Acta ; 1838(6): 1594-618, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24374314

RESUMO

The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/metabolismo , Doenças Neurodegenerativas/terapia , Animais , Resposta ao Choque Térmico/fisiologia , Humanos , Doenças Neurodegenerativas/metabolismo
5.
Cells ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38994992

RESUMO

Previous studies reported that a mild, non-protein-denaturing, fever-like temperature increase induced the unfolded protein response (UPR) in mammalian cells. Our dSTORM super-resolution microscopy experiments revealed that the master regulator of the UPR, the IRE1 (inositol-requiring enzyme 1) protein, is clustered as a result of UPR activation in a human osteosarcoma cell line (U2OS) upon mild heat stress. Using ER thermo yellow, a temperature-sensitive fluorescent probe targeted to the endoplasmic reticulum (ER), we detected significant intracellular thermogenesis in mouse embryonic fibroblast (MEF) cells. Temperatures reached at least 8 °C higher than the external environment (40 °C), resulting in exceptionally high ER temperatures similar to those previously described for mitochondria. Mild heat-induced thermogenesis in the ER of MEF cells was likely due to the uncoupling of the Ca2+/ATPase (SERCA) pump. The high ER temperatures initiated a pronounced cytosolic heat-shock response in MEF cells, which was significantly lower in U2OS cells in which both the ER thermogenesis and SERCA pump uncoupling were absent. Our results suggest that depending on intrinsic cellular properties, mild hyperthermia-induced intracellular thermogenesis defines the cellular response mechanism and determines the outcome of hyperthermic stress.


Assuntos
Retículo Endoplasmático , Resposta ao Choque Térmico , Termogênese , Humanos , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Hipertermia/metabolismo , Hipertermia/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Int J Hyperthermia ; 29(5): 491-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23841917

RESUMO

Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo- or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies.


Assuntos
Hipertermia Induzida , Fluidez de Membrana , Neoplasias/terapia , Animais , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo dos Lipídeos , Neoplasias/metabolismo
7.
Mol Membr Biol ; 29(7): 274-89, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22583025

RESUMO

The in vitro culture of cells offers an extremely valuable method for probing biochemical questions and many commonly-used protocols are available. For mammalian cells a source of lipid is usually provided in the serum component. In this study we examined the question as to whether the nature of the lipid could become limiting at high cell densities and, therefore, prospectively influence the metabolism and physiology of the cells themselves. When B16 mouse melanoma cells were cultured, we noted a marked decrease in the proportions of n-3 and n-6 polyunsaturated fatty acids (PUFAs) with increasing cell density. This was despite considerable quantities of these PUFAs still remaining in the culture medium and seemed to reflect the preferential uptake of unesterified PUFA rather than other lipid classes from the media. The reduction in B16 total PUFA was reflected in changes in about 70% of the molecular species of membrane phosphoglycerides which were analysed by mass spectrometry. The importance of this finding lies in the need for n-3 and n-6 PUFA in mammalian cells (which cannot synthesize their own). Although the cholesterol content of cells was unchanged the amount of cholesterol enrichment in membrane rafts (as assessed by fluorescence) was severely decreased, simultaneous with a reduced heat shock response following exposure to 42°C. These data emphasize the pivotal role of nutrient supply (in this case for PUFAs) in modifying responses to stress and highlight the need for the careful control of culture conditions when assessing cellular responses in vitro.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Glicerofosfolipídeos/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Cultura/farmacologia , Ácidos Graxos Insaturados/metabolismo , Temperatura Alta , Melanoma/patologia , Camundongos
8.
Biomedicines ; 10(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625909

RESUMO

Mild stress could help cells to survive more severe environmental or pathophysiological conditions. In the current study, we investigated the cellular mechanisms which contribute to the development of stress tolerance upon a prolonged (0-12 h) fever-like (40 °C) or a moderate (42.5 °C) hyperthermia in mammalian Chinese Hamster Ovary (CHO) cells. Our results indicate that mild heat triggers a distinct, dose-dependent remodeling of the cellular lipidome followed by the expression of heat shock proteins only at higher heat dosages. A significant elevation in the relative concentration of saturated membrane lipid species and specific lysophosphatidylinositol and sphingolipid species suggests prompt membrane microdomain reorganization and an overall membrane rigidification in response to the fluidizing heat in a time-dependent manner. RNAseq experiments reveal that mild heat initiates endoplasmic reticulum stress-related signaling cascades resulting in lipid rearrangement and ultimately in an elevated resistance against membrane fluidization by benzyl alcohol. To protect cells against lethal, protein-denaturing high temperatures, the classical heat shock protein response was required. The different layers of stress response elicited by different heat dosages highlight the capability of cells to utilize multiple tools to gain resistance against or to survive lethal stress conditions.

9.
J Biol Chem ; 285(53): 41765-71, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20966075

RESUMO

The plasma membrane has been hypothesized to contain nanoscopic lipid platforms, which are discussed in the context of "lipid rafts" or "membrane rafts." Based on biochemical and cell biological studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition, and heterogeneity. We present here a method that allows for the first time the direct imaging of nanoscopic long-lived platforms with raft-like properties diffusing in the live cell plasma membrane. Our method senses these platforms by their property to assemble a characteristic set of fluorescent marker proteins or lipids on a time scale of seconds. A special photobleaching protocol was used to reduce the surface density of labeled mobile platforms down to the level of well isolated diffraction-limited spots without altering the single spot brightness. The statistical distribution of probe molecules per platform was determined by single molecule brightness analysis. For demonstration, we used the consensus raft marker glycosylphosphatidylinositol-anchored monomeric GFP and the fluorescent lipid analog BODIPY-G(M1), which preferentially partitions into liquid-ordered phases. For both markers, we found cholesterol-dependent homo-association in the plasma membrane of living CHO and Jurkat T cells in the resting state, thereby demonstrating the existence of small, mobile, long-lived platforms containing these probes. We further applied the technology to address structural changes in the plasma membrane during fever-type heat shock: at elevated temperatures, the glycosylphosphatidylinositol-anchored monomeric GFP homo-association disappeared, accompanied by an increase in the expression of the small heat shock protein Hsp27.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/química , Microscopia/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Colesterol/química , Cricetinae , Cricetulus , Difusão , Proteínas de Fluorescência Verde/química , Humanos , Células Jurkat , Microdomínios da Membrana/química , Propriedades de Superfície
10.
Pharmaceutics ; 13(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34959318

RESUMO

BGP-15 is a Hungarian-developed drug candidate with numerous beneficial effects. Its potential anti-inflammatory effect is a common assumption, but it has not been investigated in topical formulations yet. The aim of our study was to formulate 10% BGP-15 creams with different penetration enhancers to ensure good drug delivery, improve bioavailability of the drug and investigate the potential anti-inflammatory effect of BGP-15 creams in vivo. Since the exact mechanism of the effect is still unknown, the antioxidant effect (tested with UVB radiation) and the ability of BGP-15 to decrease macrophage activation were evaluated. Biocompatibility investigations were carried out on HaCaT cells to make sure that the formulations and the selected excipients can be safely used. Dosage form studies were also completed with texture analysis and in vitro release with Franz diffusion chamber apparatus. Our results show that the ointments were able to reduce the extent of local inflammation in mice, but the exact mechanism of the effect remains unknown since BGP-15 did not show any antioxidant effect, nor was it able to decrease LPS-induced macrophage activation. Our results support the hypothesis that BGP-15 has a potential anti-inflammatory effect, even if it is topically applied, but the mechanism of the effect remains unclear and requires further pharmacological studies.

11.
Cells ; 9(4)2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32290618

RESUMO

The heat shock response (HSR) regulates induction of stress/heat shock proteins (HSPs) to preserve proteostasis during cellular stress. Earlier, our group established that the plasma membrane (PM) acts as a sensor and regulator of HSR through changes in its microdomain organization. PM microdomains such as lipid rafts, dynamic nanoscale assemblies enriched in cholesterol and sphingomyelin, and caveolae, cholesterol-rich PM invaginations, constitute clustering platforms for proteins functional in signaling cascades. Here, we aimed to compare the effect of cyclodextrin (MßCD)- and nystatin-induced cholesterol modulations on stress-activated expression of the representative HSPs, HSP70, and HSP25 in mouse B16-F10 melanoma cells. Depletion of cholesterol levels with MßCD impaired the heat-inducibility of both HSP70 and HSP25. Sequestration of cholesterol with nystatin impaired the heat-inducibility of HSP25 but not of HSP70. Imaging fluorescent correlation spectroscopy marked a modulated lateral diffusion constant of fluorescently labelled cholesterol in PM during cholesterol deprived conditions. Lipidomics analysis upon MßCD treatment revealed, next to cholesterol reductions, decreased lysophosphatidylcholine and phosphatidic acid levels. These data not only highlight the involvement of PM integrity in HSR but also suggest that altered dynamics of specific cholesterol pools could represent a mechanism to fine tune HSP expression.


Assuntos
Membrana Celular/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Melanoma/genética , Microdomínios da Membrana/metabolismo , Animais , Melanoma/patologia , Camundongos , Transdução de Sinais
12.
Cytometry A ; 73(3): 220-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18163467

RESUMO

Lipid rafts are cholesterol- and glycosphingolipid-rich plasma membrane microdomains, which control signal transduction, cellular contacts, pathogen recognition, and internalization processes. Their stability/lifetime, heterogeneity remained still controversial, mostly due to the high diversity of raft markers and cellular models. The correspondence of the rafts of living cells to liquid ordered (Lo) domains of model membranes and the effect of modulating rafts on the structural dynamics of their bulk membrane environment are also yet unresolved questions. Spatial overlap of various lipid and protein raft markers on live cells was studied by confocal laser scanning microscopy, while fluorescence polarization of DiIC18(3) and Bodipy-phosphatidylcholine was imaged with differential polarization CLSM (DP-CLSM). Mobility of the diI probe under different conditions was assessed by fluorescence correlation spectroscopic (FCS). GM1 gangliosides highly colocalized with GPI-linked protein markers of rafts and a new anti-cholesterol antibody (AC8) in various immune cells. On the same cells, albeit not fully excluded from rafts, diI colocalized much less with raft markers of both lipid and protein nature, suggesting the Lo membrane regions are not equivalents to lipid rafts. The DP-CLSM technique was capable of imaging probe orientation and heterogeneity of polarization in the plasma membrane of live cells, reflecting differences in lipid order/packing. This property--in accordance with diI mobility assessed by FCS--was sensitive to modulation of rafts either through their lipids or proteins. Our complex imaging analysis demonstrated that two lipid probes--G(M1) and a new anti-cholesterol antibody--equivocally label the membrane rafts on a variety of cell types, while some raft-associated proteins (MHC-II, CD48, CD59, or CD90) do not colocalize with each other. This indicates the compositional heterogeneity of rafts. Usefulness of the DP-CLSM technique in imaging immune cell surface, in terms of lipid order/packing heterogeneities, was also shown together with its sensitivity to monitor biological modulation of lipid rafts.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microscopia de Polarização/métodos , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência/métodos
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(11): 1399-1412, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30077797

RESUMO

There is a growing body of evidence that poly(ADP-ribose) polymerase-2 (PARP2), although originally described as a DNA repair protein, has a widespread role as a metabolic regulator. We show that the ablation of PARP2 induced characteristic changes in the lipidome. The silencing of PARP2 induced the expression of sterol regulatory element-binding protein-1 and -2 and initiated de novo cholesterol biosynthesis in skeletal muscle. Increased muscular cholesterol was shunted to muscular biosynthesis of dihydrotestosterone, an anabolic steroid. Thus, skeletal muscle fibers in PARP2-/- mice were stronger compared to those of their wild-type littermates. In addition, we detected changes in the dynamics of the cell membrane, suggesting that lipidome changes also affect the biophysical characteristics of the cell membrane. In in silico and wet chemistry studies, we identified lipid species that can decrease the expression of PARP2 and potentially phenocopy the genetic abruption of PARP2, including artificial steroids. In view of these observations, we propose a new role for PARP2 as a lipid-modulated regulator of lipid metabolism.


Assuntos
Colesterol/metabolismo , Técnicas de Inativação de Genes , Músculo Esquelético/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Animais , Linhagem Celular , Membrana Celular/metabolismo , Di-Hidrotestosterona/metabolismo , Homeostase , Metabolismo dos Lipídeos , Masculino , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
Cell Signal ; 18(11): 1887-96, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16549336

RESUMO

The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.


Assuntos
Apoptose , Ceramidas/biossíntese , Galectina 1/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/fisiologia , Linhagem Celular , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Mitocôndrias/enzimologia , Fosforilação , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
15.
PLoS One ; 12(3): e0173739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282432

RESUMO

Cell membranes actively participate in stress sensing and signalling. Here we present the first in-depth lipidomic analysis to characterize alterations in the fission yeast Schizosaccharomyces pombe in response to mild heat stress (HS). The lipidome was assessed by a simple one-step methanolic extraction. Genetic manipulations that altered triglyceride (TG) content in the absence or presence of HS gave rise to distinct lipidomic fingerprints for S. pombe. Cells unable to produce TG demonstrated long-lasting growth arrest and enhanced signalling lipid generation. Our results reveal that metabolic crosstalk between membrane and storage lipids facilitates homeostatic maintenance of the membrane physical/chemical state that resists negative effects on cell growth and viability in response to HS. We propose a novel stress adaptation mechanism in which heat-induced TG synthesis contributes to membrane rigidization by accommodating unsaturated fatty acids of structural lipids, enabling their replacement by newly synthesized saturated fatty acids.


Assuntos
Membrana Celular/metabolismo , Resposta ao Choque Térmico/fisiologia , Schizosaccharomyces/fisiologia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Espectrometria de Massas/métodos , Lipídeos de Membrana/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Triglicerídeos/biossíntese
16.
Sci Rep ; 7(1): 15643, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142280

RESUMO

The current research on cellular heat stress management focuses on the roles of heat shock proteins (HSPs) and the proteostasis network under severe stress conditions. The mild, fever-type stress and the maintenance of membrane homeostasis are less well understood. Herein, we characterized the acute effect of mild, fever-range heat shock on membrane organization, and HSP synthesis and localization in two mammalian cell lines, to delineate the role of membranes in the sensing and adaptation to heat. A multidisciplinary approach combining ultrasensitive fluorescence microscopy and lipidomics revealed the molecular details of novel cellular "eustress", when cells adapt to mild heat by maintaining membrane homeostasis, activating lipid remodeling, and redistributing chaperone proteins. Notably, this leads to acquired thermotolerance in the complete absence of the induction of HSPs. At higher temperatures, additional defense mechanisms are activated, including elevated expression of molecular chaperones, contributing to an extended stress memory and acquired thermotolerance.


Assuntos
Adaptação Fisiológica/genética , Febre/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Animais , Células CHO , Sobrevivência Celular/genética , Cricetinae , Cricetulus , Febre/patologia , Temperatura Alta/efeitos adversos
17.
Immunol Lett ; 104(1-2): 59-69, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16388855

RESUMO

The possible regulatory mechanisms by which glycosphingolipid- and cholesterol-rich membrane microdomains, caveolar and non-caveolar lipid rafts, control the immune response are continuously expanding. In the present overview we will focus on how these membrane-organizing lipids are involved, in collaboration with tetraspanin proteins, in the formation of distinct MHC-I and MHC-II microdomains at the cell surface and will analyze the possible roles of MHC compartmentation in the processes of antigen presentation and regulation of various stages of the cellular immune response. Some basic, lipid raft- and tetraspan mediated mechanisms involved in the formation and function of immunological synapses between various APCs and T-cells will also be discussed. Finally, a new aspect of immune regulation by sphingolipids will be briefly described, namely how can the death or stress signals, leading to ceramide accumulation, result in raft-associated regulatory platforms controlling cell death or antigen-induced, TCRmediated signaling of T-lymphocytes. The influence of these signals and their cross-talk on the fate (death or survival) of T-cells and the outcome of T-cell response will also be discussed.


Assuntos
Colesterol/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Microdomínios da Membrana/metabolismo , Esfingolipídeos/metabolismo , Linfócitos T/imunologia , Animais , Apoptose , Colesterol/análise , Humanos , Microdomínios da Membrana/química , Esfingolipídeos/análise
18.
Cell Stress Chaperones ; 21(2): 327-38, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631139

RESUMO

Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both α-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Δ) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Trealose/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico Pequenas/genética , Temperatura Alta , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Mutação , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Estresse Fisiológico , Trealose/genética
19.
Immunol Lett ; 92(1-2): 117-24, 2004 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15081535

RESUMO

Glycosphingolipid- and cholesterol-rich membrane microdomains (rafts) in T-cells are important in triggering and regulation of T(H)-cell activation in immunological synapses (IS), which in turn may control the T-cell repertoire in lymph nodes and at the periphery. It is less known, however, how the "presynaptic side" controls formation and function of IS. We investigated here activation signals and synapse formation frequency of murine IP12-7 T(H) hybridoma cell specific to influenza virus HA-peptide upon stimulation with two B-lymphoma cells, A20 and 2PK3, pulsed with peptide antigen. Confocal microscopic colocalization and FRET data consonantly revealed clustered distribution and constitutive raft-association of a major fraction of MHC-II molecules in both APCs. Costimulatory molecules (CD80 and CD86), not associated constitutively with rafts, were expressed at much lower level in A20 cells. T-cells responded to 2PK3 APC with much higher signal strength than to A20 cells, in good correlation with the frequency of IS formation, as assessed by microscopic conjugation assay. Disruption of rafts by cholesterol depletion in 2PK3 cells largely decreased the magnitude of T(H) cell activation signals, especially at low peptide antigen doses, similarly to masking CD4 with mAb on T-cells. The frequency of IS formation was reduced by blocking LFA-1 on T-cells and CD80 on APCs, by lowering the temperature below the phase transition of the membrane or by disrupting actin cytoskeleton. These data together suggest that the surface density and affinity/stability of peptide-MHC-II complexes and the costimulatory level are primary determinants for an efficient TCR recognition and the strength of the subsequent T-cell signals, as well as of the IS formation, which additionally requires a cytoskeleton-dependent remodeling of APC surface after the initial TCR signal. The threshold of T-cell activation can be further set by rafting MHC-II domains via concentrating high affinity ligands and promoting thereby T-cells for sensing low density antigen. Our data also demonstrate that B-cells, similarly to dendritic cells, could also provide T-cells with antigen-independent weak survival signals, likely associated with integrin engagement.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Membrana Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Microdomínios da Membrana/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/ultraestrutura , Ativação Linfocitária/imunologia , Linfoma de Células B/imunologia , Camundongos , Fragmentos de Peptídeos/imunologia , Fatores de Tempo , Células Tumorais Cultivadas
20.
PLoS One ; 9(2): e89136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586549

RESUMO

Eukaryotic cells exhibit a characteristic response to hyperthermic treatment, involving morphological and cytoskeletal alterations and the induction of heat shock protein synthesis. Small GTPases of the Ras superfamily are known to serve as molecular switches which mediate responses to extracellular stimuli. We addressed here how small GTPase Rac1 integrates signals from heat stress and simultaneously induces various cellular changes in mammalian cells. As evidence that Rac1 is implicated in the heat shock response, we first demonstrated that both mild (41.5°C) and severe (43°C) heat shock induced membrane translocation of Rac1. Following inhibition of the activation or palmitoylation of Rac1, the size of its plasma membrane-bound pool was significantly decreased while the heat shock-induced alterations in the cytoskeleton and cell morphology were prevented. We earlier documented that the size distribution pattern of cholesterol-rich rafts is temperature dependent and hypothesized that this is coupled to the triggering mechanism of stress sensing and signaling. Interestingly, when plasma membrane localization of Rac1 was inhibited, a different and temperature independent average domain size was detected. In addition, inhibition of the activation or palmitoylation of Rac1 resulted in a strongly decreased expression of the genes of major heat shock proteins hsp25 and hsp70 under both mild and severe heat stress conditions.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Melanoma Experimental/patologia , Microdomínios da Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica , Lipoilação , Fluidez de Membrana , Camundongos , Chaperonas Moleculares , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA