Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mar Drugs ; 22(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667760

RESUMO

The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.


Assuntos
Antineoplásicos , Organismos Aquáticos , Produtos Biológicos , Fator 1 Induzível por Hipóxia , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organismos Aquáticos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Bioorg Chem ; 138: 106614, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216893

RESUMO

The inflammatory response is a vital mechanism for repairing damage induced by aberrant health states or external insults; however, persistent activation can be linked to numerous chronic diseases. The nuclear factor kappa ß (NF-κB) inflammatory pathway and its associated mediators have emerged as critical targets for therapeutic interventions aimed at modulating inflammation, necessitating ongoing drug development. Previous studies have reported the inhibitory effect of a hydroethanol extract derived from Parinari excelsa Sabine (Chrysobalanaceae) on tumour necrosis factor-alpha (TNF-α), but the phytoconstituents and mechanisms of action remained elusive. The primary objective of this study was to elucidate the phytochemical composition of P. excelsa stem bark and its role in the mechanisms underpinning its biological activity. Two compounds were detected via HPLC-DAD-ESI(Ion Trap)-MS2 analysis. The predominant compound was isolated and identified as naringenin-8-sulphonate (1), while the identity of the second compound (compound 2) could not be determined. Both compound 1 and the extract were assessed for anti-inflammatory properties using a cell-based inflammation model, in which THP-1-derived macrophages were stimulated with LPS to examine the treatments' effects on various stages of the NF-κB pathway. Compound 1, whose biological activity is reported here for the first time, demonstrated inhibition of NF-κB activity, reduction in interleukin 6 (IL-6), TNF-α, and interleukin 1 beta (IL-1ß) production, as well as a decrease in p65 nuclear translocation in THP-1 cells, thus highlighting the potential role of sulphur substituents in the activity of naringenin (3). To explore the influence of sulphation on the anti-inflammatory properties of naringenin derivatives, we synthesized naringenin-4'-O-sulphate (4) and naringenin-7-O-sulphate (5) and evaluated their anti-inflammatory effects. Naringenin derivatives 4 and 5 did not display potent anti-inflammatory activities; however, compound 4 reduced IL-1ß production, and compound 5 diminished p65 translocation, with both exhibiting the capacity to inhibit TNF-α and IL-6 production. Collectively, the findings demonstrated that the P. excelsa extract was more efficacious than all tested compounds, while providing insights into the role of sulphation in the anti-inflammatory activity of naringenin derivatives.


Assuntos
Chrysobalanaceae , NF-kappa B , Humanos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Chrysobalanaceae/metabolismo , Casca de Planta/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Lipopolissacarídeos/farmacologia
3.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244489

RESUMO

Commonly used to treat skin injuries in Asia, several Homalium spp. have been found to promote skin regeneration and wound healing. While ethnobotanical surveys report the use of H. bhamoense trunk bark as a wound salve, there are no studies covering bioactive properties. As impaired cutaneous healing is characterized by excessive inflammation, a series of inflammatory mediators involved in wound healing were targeted with a methanol extract obtained from H. bhamoense trunk bark. Results showed concentration-dependent inhibition of hyaluronidase and 5-lipoxygenase upon exposure to the extract, with IC50 values of 396.9 ± 25.7 and 29.0 ± 2.3 µg mL-1, respectively. H. bhamoense trunk bark extract also exerted anti-inflammatory activity by significantly suppressing the overproduction of interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages at concentrations ranging from 125 to 1000 µg mL-1, while leading to a biphasic effect on nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) levels. The phenolic profile was elucidated by HPLC-DAD, being characterized by the occurrence of ellagic acid as the main constituent, in addition to a series of methylated derivatives, which might underlie the observed anti-inflammatory effects. Our findings provide in vitro data on anti-inflammatory ability of H. bhamoense trunk bark, disclosing also potential cutaneous toxicity as assessed in HaCaT keratinocytes.


Assuntos
Anti-Inflamatórios/farmacologia , Interleucina-6/efeitos adversos , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Medicina Tradicional/métodos , Nephropidae/química , Extratos Vegetais/farmacologia , Animais , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Medicina Herbária , Hialuronoglucosaminidase/efeitos dos fármacos , Hidroxibenzoatos , Mediadores da Inflamação/farmacologia , Concentração Inibidora 50 , Interleucina-6/metabolismo , Queratinócitos , Lipopolissacarídeos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa
4.
Mar Drugs ; 17(10)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569621

RESUMO

While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Dicetopiperazinas/química , Fungos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Dicetopiperazinas/farmacologia , Dimerização , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Mar Drugs ; 17(6)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31159480

RESUMO

The role of the marine environment in the development of anticancer drugs has been widely reviewed, particularly in recent years. However, the innovation in terms of clinical benefits has not been duly emphasized, although there are important breakthroughs associated with the use of marine-derived anticancer agents that have altered the current paradigm in chemotherapy. In addition, the discovery and development of marine drugs has been extremely rewarding with significant scientific gains, such as the discovery of new anticancer mechanisms of action as well as novel molecular targets. Approximately 50 years since the approval of cytarabine, the marine-derived anticancer pharmaceutical pipeline includes four approved drugs and eighteen agents in clinical trials, six of which are in late development. Thus, the dynamic pharmaceutical pipeline consisting of approved and developmental marine-derived anticancer agents offers new hopes and new tools in the treatment of patients afflicted with previously intractable types of cancer.


Assuntos
Antineoplásicos/química , Organismos Aquáticos/química , Descoberta de Drogas/tendências , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
6.
Molecules ; 24(14)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295972

RESUMO

Predominantly spread in West Tropical Africa, the shrub Salacia senegalensis (Lam.) DC. is known because of its medicinal properties, the leaves being used in the treatment of skin diseases. Prompted by the ethnomedicinal use, a hydroethanolic extract obtained from the leaves of the plant was screened against a panel of microbial strains, the majority of which involved in superficial infections. The extract was found to be active against the dermatophytes Trichophyton rubrum and Epidermophyton floccosum. Notable results were also recorded regarding the attenuation of the inflammatory response, namely the inhibitory effects observed against soybean 5-lipoxygenase (IC50 = 71.14 µg mL-1), no interference being recorded in the cellular viability of RAW 264.7 macrophages and NO levels. Relevantly, the extract did not lead to detrimental effects against the keratinocyte cell line HaCaT, at concentrations displaying antidermatophytic and anti-inflammatory effects. Flavonoid profiling of S. senegalensis leaves was achieved for the first time, allowing the identification and quantitation of myricitrin, three 3-O-substituted quercetin derivatives, and three other flavonoid derivatives, which may contribute, at least partially, to the observed antidermatophytic and anti-inflammatory effects. In the current study, the plant S. senegalensis is assessed concerning its antidermatophytic and anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Salacia/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Antifúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Flavonoides/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/química , Células RAW 264.7 , Análise Espectral
7.
Molecules ; 23(5)2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702573

RESUMO

Bioprospection of marine invertebrates has been predominantly biased by the biological richness of tropical regions, thus neglecting macro-organisms from temperate ecosystems. Species that were not the object of studies on their biochemical composition include the Heterobranchia gastropods Armina maculata, Armina tigrina and Aglaja tricolorata, inhabitants of the Portuguese Atlantic coastal waters. Here, we present for the first time the fatty acid profile of neutral lipids and homarine content of these three species. Qualitative and quantitative differences in the fatty acid content among species points to the existence of a fatty acid profile of neutral lipids, particularly of each genus. The results from cytotoxicity assays, using the acetonic extracts of the gastropods on human gastric adenocarcinoma (AGS) and human lung adenocarcinoma (A549) cell lines, revealed a pronounced cytotoxic effect of the A. tigrina extract on both cell lines (IC50 values of 68.75 and 69.77 µg mL−1 for AGS and A549, respectively). It is worth noting the significant reduction of NO levels in LPS-challenged RAW 264.7 macrophages exposed to A. tricolorata extract, at concentrations as low as 125 µg mL−1.


Assuntos
Anti-Inflamatórios/análise , Antineoplásicos/análise , Ácidos Graxos/análise , Gastrópodes/metabolismo , Macrófagos/efeitos dos fármacos , Ácidos Picolínicos/análise , Células A549 , Animais , Anti-Inflamatórios/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Humanos , Lipopolissacarídeos/efeitos adversos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Ácidos Picolínicos/metabolismo , Células RAW 264.7
8.
Mar Drugs ; 14(5)2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213412

RESUMO

Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors' opinion should be pursued due to their most promising anticancer activities.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/metabolismo , Produtos Biológicos/farmacologia , Invertebrados/metabolismo , Neoplasias/tratamento farmacológico , Animais , Descoberta de Drogas/métodos , Humanos , Biologia Marinha/métodos
9.
Mar Drugs ; 13(6): 3950-91, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26090846

RESUMO

Marine fungi are known to produce structurally unique secondary metabolites, and more than 1000 marine fungal-derived metabolites have already been reported. Despite the absence of marine fungal-derived metabolites in the current clinical pipeline, dozens of them have been classified as potential chemotherapy candidates because of their anticancer activity. Over the last decade, several comprehensive reviews have covered the potential anticancer activity of marine fungal-derived metabolites. However, these reviews consider the term "cytotoxicity" to be synonymous with "anticancer agent", which is not actually true. Indeed, a cytotoxic compound is by definition a poisonous compound. To become a potential anticancer agent, a cytotoxic compound must at least display (i) selectivity between normal and cancer cells (ii) activity against multidrug-resistant (MDR) cancer cells; and (iii) a preferentially non-apoptotic cell death mechanism, as it is now well known that a high proportion of cancer cells that resist chemotherapy are in fact apoptosis-resistant cancer cells against which pro-apoptotic drugs have more than limited efficacy. The present review thus focuses on the cytotoxic marine fungal-derived metabolites whose ability to kill cancer cells has been reported in the literature. Particular attention is paid to the compounds that kill cancer cells through non-apoptotic cell death mechanisms.


Assuntos
Antineoplásicos/isolamento & purificação , Fungos/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Organismos Aquáticos/microbiologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Metabolismo Secundário
10.
J Ethnopharmacol ; 337(Pt 3): 118915, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389391

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of "Mexican calea" (Calea zacatechichi Schltdl.) in ritualistic ceremonies, due to its dream-inducing effects, was until recently limited to indigenous communities in Mexico. However, the plant has recently gained popularity in Western societies being commonly used in recreational settings. Despite the traditional and recreational uses, mechanisms underlying its reported oneirogenic effects remain unknown, with no data available on its neurotoxic profile. AIM OF THE STUDY: The scarcity of toxicological data and the unknown role of major neurotransmitter systems in the dream-inducing properties of the plant prompted us to investigate which neurotransmitters might be affected upon its consumption, as well as the potential cytotoxic effects on neurons and microglial cells. Furthermore, we aimed to explore a relationship between the recorded effects and specific constituents. MATERIALS AND METHODS: Effects on cholinergic and monoaminergic pathways were investigated using enzymatic assays, with the latter also being conducted in neuronal SH-SY5Y cells along with the impact on glutamate-induced excitotoxicity. Investigation of the neurotoxic profile was approached in neuronal SH-SY5Y and microglial BV-2 cells, evaluating effects on metabolic performance and membrane integrity using MTT and LDH leakage assays, respectively. Potential interference with oxidative stress was monitored by assessing free radical's levels, as well as 5-lipoxygenase mediated lipid peroxidation. Phenolic constituents were identified through HPLC-DAD-ESI(Ion Trap)MSn analysis. RESULTS: Based on the significant inhibition upon acetylcholinesterase (p < 0.05) and tyrosinase (IC50 = 60.87 ± 7.3 µg/mL; p < 0.05), the aqueous extract obtained from the aerial parts of C. zacatechichi interferes with the cholinergic and dopaminergic systems, but has no impact against monoamine oxidase A. Additionally, a notable cytotoxic effect was observed in SH-SY5Y and BV-2 cells at concentrations as low as 125 and 500 µg/mL (p < 0.05), respectively, LDH leakage suggesting apoptosis may occur at these concentrations, with necroptosis observed at higher ones. Despite the neurocytotoxic profile, these effects appear to be independent of radical stress, as the C. zacatechichi extract scavenged nitric oxide and superoxide radicals at concentrations as low as 62.5 µg/mL, significantly inhibiting also 5-lipoxygenase (IC50 = 72.60 ± 7.3 µg/mL; p < 0.05). Qualitative and quantitative analysis using HPLC-DAD-ESI(Ion Trap)MSn enabled the identification of 28 constituents, with 24 of them being previously unreported in this species. These include a series of dicaffeoylquinic, caffeoylpentoside, and feruloylquinic acids, along with 8 flavonols not previously known to occur in the species, mainly 3-O-monoglycosylated derivatives of quercetin, kaempferol, and isorhamnetin. CONCLUSIONS: Our findings regarding the neuroglial toxicity elicited by C. zacatechichi emphasize the necessity for a thorough elucidation of the plant's toxicity profile. Additionally, evidence is provided that the aerial parts of the plant inhibit both acetylcholinesterase and tyrosinase, potentially linking its psychopharmacological effects to the cholinergic and dopaminergic systems, with an apparent contribution from specific phenolic constituents previously unknown to occur in the species. Collectively, our results lay the groundwork for a regulatory framework on the consumption of C. zacatechichi in recreational settings and contribute to elucidating previous contradictory findings regarding the mechanisms underlying the dream-inducing effects of the plant.

11.
Front Pharmacol ; 14: 1310439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38371914

RESUMO

Introduction: Despite the increasing number of essential oils being reported on their potential therapeutic effects, some remain relatively unknown on their biological properties. That is the case of the essential oils obtained from copaiba (Copaifera officinalis L.), wintergreen (Gaultheria fragrantissima Wall.), everlasting (Helichrysum italicum (Roth) G.Don) and clove (Syzygium aromaticum (L.) Merr. & L.M.Perry), commonly labelled as being useful on the amelioration of conditions with an inflammatory background. Methods: To further broaden the current knowledge on the four essential oils, commercially available samples were approached on their effects upon a series of mediators that are involved on the inflammatory and oxidative response, both through in vitro cell-free and cell-based assays (5-lipoxygenase activity, lipid peroxidation, free radical and nitric oxide radical scavenging properties or tyrosinase inhibition). Results: The four oils proved to be active at some of the concentrations tested in most of the performed assays. Significant differences were found between the essential oils, S. aromaticum proving to tbe the most active, followed by G. fragrantissima against 5-lipoxygenase (5-LOX) and linoleic acid peroxidation, proving their potential use as antioxidants and anti-inflammatory agents. In fact, the IC50 value of S. aromaticum in the 5-LOX assay was 62.30 µg mL-1. Besides S. aromaticum efficiently scavenged superoxide radicals generated by xanthine/xanthine oxidase, displaying an IC50 value of 135.26 µg mL-1. The essential oil obtained from H. italicum exhibited a significant decrease in the nitric oxide levels on BV-2 cells, showing its potential as a cytoprotective agent against toxic damage. Copaiba oil ranked first as the most potent tyrosinase inhibitor, exhibiting an IC50 98.22 µg mL-1. Conclusion: More studies are needed to describe the essential oils properties, but these results confirm the potential of these essential oils as anti-inflammatory and antioxidant agents.

12.
Antibiotics (Basel) ; 12(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37237772

RESUMO

Pest resistance against fungicides is a widespread and increasing problem, with impact on crop production and public health, making the development of new fungicides an urgent need. Chemical analyses of a crude methanol extract (CME) of Guiera senegalensis leaves revealed the presence of sugars, phospholipids, phytosterols, guieranone A, porphyrin-containing compounds, and phenolics. To connect chemical composition with biological effects, solid-phase extraction was used to discard water-soluble compounds with low affinity for the C18 matrix and obtain an ethyl acetate fraction (EAF) that concentrates guieranone A and chlorophylls, and a methanol fraction (MF) dominated by phenolics. While the CME and MF exhibited poor antifungal activity against Aspergillus fumigatus, Fusarium oxysporum and Colletotrichum gloeosporioides, the EAF demonstrated antifungal activity against these filamentous fungi, particularly against C. gloeosporioides. Studies with yeasts revealed that the EAF has strong effectiveness against Saccharomyces cerevisiae, Cryptococcus neoformans and Candida krusei with MICs of 8, 8 and 16 µg/mL, respectively. A combination of in vivo and in vitro studies shows that the EAF can function as a mitochondrial toxin, compromising complexes I and II activities, and as a strong inhibitor of fungal tyrosinase (Ki = 14.40 ± 4.49 µg/mL). Thus, EAF appears to be a promising candidate for the development of new multi-target fungicides.

13.
Life (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836763

RESUMO

The present work aimed to detail the mechanisms elicited by Allophylus africanus P. Beauv. stem bark extract in human stomach cancer cells and to identify the bioactives underlying the cytotoxicity. MTT reduction and LDH leakage assays allowed characterizing the cytotoxic effects in AGS cells, which were further detailed by morphological analysis using phalloidin and Hoechst 33258. Proapoptotic mechanisms were elucidated through a mitochondrial membrane potential assay and by assessing the impact upon the activity of caspase-9 and -3. The extract displayed selective cytotoxicity against AGS cells. The absence of plasma membrane permeabilization, along with apoptotic body formation, suggested that pro-apoptotic effects triggered cell death. Intrinsic apoptosis pathway activation was verified, as mitochondrial membrane potential decrease and activation of caspase-9 and -3 were observed. HPLC-DAD profiling enabled the identification of two apigenin-di-C-glycosides, vicenin-2 (1) and apigenin-6-C-hexoside-8-C-pentoside (3), as well as three mono-C-glycosides-O-glycosylated derivatives, apigenin-7-O-hexoside-8-C-hexoside (2), apigenin-8-C-(2-rhamnosyl)hexoside (4) and apigenin-6-C-(2-rhamnosyl)hexoside (5). Isovitexin-2″-O-rhamnoside (5) is the main constituent, accounting for nearly 40% of the total quantifiable flavonoid content. Our results allowed us to establish the relationship between the presence of vicenin-2 and other apigenin derivatives with the contribution to the cytotoxic effects on the presented AGS cells. Our findings attest the anticancer potential of A. africanus stem bark against gastric adenocarcinoma, calling for studies to develop herbal-based products and/or the use of apigenin derivatives in chemotherapeutic drug development.

14.
Food Res Int ; 155: 111082, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400458

RESUMO

Among several extracts from species from Guinea-Bissauan flora, the hydroethanol extract obtained from the leaves of gingerbread plum (Neocarya macrophylla (Sabine) Prance ex F. White.) revealed to be one of the most cytotoxic towards human gastric AGS carcinoma cells. Considering the increasing use of N. macrophylla in the food industry and the abundant biomass of agricultural wastes being generated, the identification of phenolic bioactives has been attained by HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn. Twenty-seven phenolic constituents were identified for the first time in the monotypic genus Neosartorya, 5-O-caffeoylquinic acid being detected as the major constituent (4.90 ± 0.20 mg g-1 dry extract). While 15 flavan-3-ols derivatives were determined, the extract is predominantly characterized by the occurrence of quercetin, kaempferol, apigenin and chrysoeriol glycosides. Typical apoptotic changes in gastric adenocarcinoma AGS cells upon exposure to N. macrophylla leaf extract were observed. The apoptotic cell death is mediated by the activation of the mitochondrial pathway, as loss of mitochondrial membrane potential was detected, as well as increased caspase-9 and -3 activities. The industrial relevance of this plant material, along with the data presented here on the potential anticancer effects of N. macrophylla and the efficient extraction of phenolic bioactives using water and ethanol (GRAS substance), calls for further research on the leaves as a potential functional food and/or ingredient.


Assuntos
Carcinoma , Chrysobalanaceae , Cromatografia Líquida de Alta Pressão , Humanos , Fenóis/análise , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Espectrometria de Massas por Ionização por Electrospray
15.
Arch Public Health ; 80(1): 142, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35590340

RESUMO

BACKGROUND: Injury remains a major concern to public health in the European region. Previous iterations of the Global Burden of Disease (GBD) study showed wide variation in injury death and disability adjusted life year (DALY) rates across Europe, indicating injury inequality gaps between sub-regions and countries. The objectives of this study were to: 1) compare GBD 2019 estimates on injury mortality and DALYs across European sub-regions and countries by cause-of-injury category and sex; 2) examine changes in injury DALY rates over a 20 year-period by cause-of-injury category, sub-region and country; and 3) assess inequalities in injury mortality and DALY rates across the countries. METHODS: We performed a secondary database descriptive study using the GBD 2019 results on injuries in 44 European countries from 2000 to 2019. Inequality in DALY rates between these countries was assessed by calculating the DALY rate ratio between the highest-ranking country and lowest-ranking country in each year. RESULTS: In 2019, in Eastern Europe 80 [95% uncertainty interval (UI): 71 to 89] people per 100,000 died from injuries; twice as high compared to Central Europe (38 injury deaths per 100,000; 95% UI 34 to 42) and three times as high compared to Western Europe (27 injury deaths per 100,000; 95%UI 25 to 28). The injury DALY rates showed less pronounced differences between Eastern (5129 DALYs per 100,000; 95% UI: 4547 to 5864), Central (2940 DALYs per 100,000; 95% UI: 2452 to 3546) and Western Europe (1782 DALYs per 100,000; 95% UI: 1523 to 2115). Injury DALY rate was lowest in Italy (1489 DALYs per 100,000) and highest in Ukraine (5553 DALYs per 100,000). The difference in injury DALY rates by country was larger for males compared to females. The DALY rate ratio was highest in 2005, with DALY rate in the lowest-ranking country (Russian Federation) 6.0 times higher compared to the highest-ranking country (Malta). After 2005, the DALY rate ratio between the lowest- and the highest-ranking country gradually decreased to 3.7 in 2019. CONCLUSIONS: Injury mortality and DALY rates were highest in Eastern Europe and lowest in Western Europe, although differences in injury DALY rates declined rapidly, particularly in the past decade. The injury DALY rate ratio of highest- and lowest-ranking country declined from 2005 onwards, indicating declining inequalities in injuries between European countries.

16.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546518

RESUMO

Salvia divinorum Epling and Játiva is a perennial mint from the Lamiaceae family, endemic to Mexico, predominantly from the state of Oaxaca. Due to its psychoactive properties, S. divinorum had been used for centuries by Mazatecans for divinatory, religious, and medicinal purposes. In recent years, its use for recreational purposes, especially among adolescents and young adults, has progressively increased. The main bioactive compound underlying the hallucinogenic effects, salvinorin A, is a non-nitrogenous diterpenoid with high affinity and selectivity for the k-opioid receptor. The aim of this work is to comprehensively review and discuss the toxicokinetics and toxicodynamics of S. divinorum and salvinorin A, highlighting their psychological, physiological, and toxic effects. Potential therapeutic applications and forensic aspects are also covered in this review. The leaves of S. divinorum can be chewed, drunk as an infusion, smoked, or vaporised. Absorption of salvinorin A occurs through the oral mucosa or the respiratory tract, being rapidly broken down in the gastrointestinal system to its major inactive metabolite, salvinorin B, when swallowed. Salvinorin A is rapidly distributed, with accumulation in the brain, and quickly eliminated. Its pharmacokinetic parameters parallel well with the short-lived psychoactive and physiological effects. No reports on toxicity or serious adverse outcomes were found. A variety of therapeutic applications have been proposed for S. divinorum which includes the treatment of chronic pain, gastrointestinal and mood disorders, neurological diseases, and treatment of drug dependence. Notwithstanding, there is still limited knowledge regarding the pharmacology and toxicology features of S. divinorum and salvinorin A, and this is needed due to its widespread use. Additionally, the clinical acceptance of salvinorin A has been hampered, especially due to the psychotropic side effects and misuse, turning the scientific community to the development of analogues with better pharmacological profiles.

17.
Biomed Pharmacother ; 140: 111756, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051618

RESUMO

Despite the increasing number of novel marine natural products being reported from fungi in the last three decades, to date only the broad-spectrum cephalosporin C can be tracked back as marine fungal-derived drug. Cephalosporins were isolated in the early 1940s from a strain of Acremonium chrysogenum obtained in a sample collected in sewage water in the Sardinian coast, preliminary findings allowing the discovery of cephalosporin C. Since then, bioprospection of marine fungi has been enabling the identification of several metabolites with antibacterial effects, many of which proving to be active against multi-drug resistant strains, available data suggesting also that some might fuel the pharmaceutical firepower towards some of the bacterial pathogens classified as a priority by the World Health Organization. Considering the success of their terrestrial counterparts on the discovery and development of several antibiotics that are nowadays used in the clinical setting, marine fungi obviously come into mind as producers of new prototypes to counteract antibiotic-resistant bacteria that are no longer responding to available treatments. We mainly aim to provide a snapshot on those metabolites that are likely to proceed to advanced preclinical development, not only based on their antibacterial potency, but also considering their targets and modes of action, and activity against priority pathogens.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/biossíntese , Fungos/metabolismo , Animais , Humanos
18.
Food Chem ; 342: 128323, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33069534

RESUMO

Caryota urens L. has long been valued as a traditional food, the edible fruits being eaten raw and the inflorescences commonly used on sweet sap and flour production. In the current work, the phenolic profile of methanol extracts obtained from the inflorescences and fruits was unveiled for the first time, nine caffeic acid derivatives being identified and quantified. Since kitul products have been reported for their antidiabetic properties, extracts radical scavenging activity and α-amylase, α-glucosidase and aldose reductase inhibitory activity were assessed. The inflorescences' extract was particularly active against yeast α-glucosidase (IC50 = 1.53 µg/mL), acting through a non-competitive inhibitory mechanism. This activity was also observed in enzyme-enriched homogenates obtained from human Caco-2 cells (IC50 = 64.75 µg/mL). Additionally, the extract obtained from the inflorescences showed no cytotoxicity on HepG2, AGS and Caco-2 cell lines. Our data suggest that C. urens inflorescences can support the development of new functional foods with α-glucosidase inhibitory activity.


Assuntos
Frutas/metabolismo , Inflorescência/metabolismo , Plantas Comestíveis/metabolismo , Células CACO-2 , Ácidos Cafeicos , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo
19.
Food Res Int ; 141: 110121, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641988

RESUMO

While the fruits of Xylopia aethiopica (Dunal) A. Rich. are important in African countries as a local trade product, their composition remains scarcely investigated. Phenolic fingerprint is herein delivered through HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2 analysis, six cinnamoylquinic acid derivatives and twenty-four flavonoid glycosides being determined, chrysoeriol-7-O-glycosides being the main constituents. A cytotoxicity screening of twenty-eight hydroethanol extracts, obtained from a collection of Guinea-Bissauan plants, against A549 and AGS carcinoma cells, revealed the selective and potent effect towards AGS cells (IC50 = 151 × 10-3 g L-1), upon exposure to the extract from X. aethiopica fruits. Additional experiments demonstrated insignificant effect on LDH release at 151 × 10-3 g L-1, morphological analysis further suggesting induction of apoptosis. Pro-apoptotic effects were confirmed, as the extract enabled the activation of the effector caspase-3, broadening the knowledge on the anticancer mechanisms elicited by the fruits of X. aethiopica. Phenolic constituents might contribute to the cytotoxic effects, particularly via caspase-3 activation. Considering that X. aethiopica fruit is very often referred as an anticancer ingredient in Africa, but mainly the potent cytotoxicity herein recorded, our results call for additional research aiming to identify non-phenolic constituents contributing to the effects and also to further detail the anticancer mechanisms.


Assuntos
Adenocarcinoma , Xylopia , África , Caspase 3 , Cromatografia Líquida de Alta Pressão , Frutas , Extratos Vegetais/farmacologia , Neoplasias Gástricas
20.
J Ethnopharmacol ; 269: 113746, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33359184

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to ethnobotanical surveys, Cassia sieberiana DC. (1825) is a particularly reputed species in African folk Medicine, namely due to the application of its leaves and roots for the treatment of diseases and symptomatology that appear to be related with an inflammatory background. In contrast with the roots of the plant, the leaves remain to be investigated, which prompted us to further detail mechanisms underlying their anti-inflammatory properties, by using in vitro models of disease. AIM OF THE STUDY: Considering its use in the amelioration and treatment of conditions that frequently underlie an inflammatory response, C. sieberiana leaves extract was prioritized amongst a collection of extracts obtained from plants collected in Guinea-Bissau. As such, this work aims to deliver experimental data on the anti-inflammatory properties of C. sieberiana leaf and to establish possible associations with its chemical composition, thus providing a rationale on its use in folk Medicine. MATERIALS AND METHODS: The chemical profile of an hydroethanol extract obtained from the leaves of the plant was established by HPLC-DAD-ESI/MSn in order to identify bioactives. The extract and its main compound were tested towards a series of inflammatory mediators, both in enzymatic and cell-based models. The capacity to interfere with the eicosanoid-metabolizing enzymes 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and -2 (COX-2) was evaluated in cell-free systems, while the effects in interleukin 6 (IL-6) and tumour necrosis factor-α (TNF-α) levels produced by THP-1 derived macrophages were assessed through ELISA. RESULTS: HPLC-DAD-ESI/MSn analysis of the extract elucidated a chemical profile qualitatively characterized by a series of anthraquinones, particularly rhein derivatives, and nine flavonols, most of which 3-O-glycosylated. Considering the concentrations of the identified compounds, quercetin was detached as the main component. Effects of the hydroethanol extract obtained from C. sieberiana leaves against key enzymes of the arachidonic acid cascade were recorded, namely a concentration-dependent inhibition against 5-LOX, at concentrations ranging from 16 to 250 µg mL-1 and a selective inhibitory action upon COX-2 (IC50 = 3.58 µg mL-1) in comparison with the isoform COX-1 (IC50 = 9.10 µg mL-1). Impact on inflammatory cytokines was also noted, C. sieberiana leaf extract significantly decreasing IL-6 levels in THP-1 derived macrophages at 250 and 500 µg mL-1. In contrast, TNF-α levels were found to be increased in the same model. Quercetin appears to partially account for the observed effects, namely due to the significant inhibitory effects on the activity of the arachidonic acid metabolizing enzymes COX-2 and 5-LOX. CONCLUSIONS: The anti-inflammatory effects herein reported provide a rationale for the use of C. sieberiana leaves in African folk practices, such as in the treatment of arthritis, rheumatism and body aches. Considering the occurrence of flavonoidic and anthraquinonic constituents, as well as the observed anti-inflammatory properties of quercetin, recorded effects must be related with the presence of several bioactives.


Assuntos
Anti-Inflamatórios/farmacologia , Cassia/química , Inibidores Enzimáticos/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Antraquinonas/química , Anti-Inflamatórios/química , Ciclo-Oxigenase 1/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Eicosanoides/metabolismo , Inibidores Enzimáticos/química , Flavonoides/química , Flavonoides/farmacologia , Guiné-Bissau , Humanos , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Medicina Tradicional , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA