Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(6): e0184322, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37222583

RESUMO

Understanding factors influencing microbial interactions, and designing methods to identify key taxa that are candidates for synthetic communities, or SynComs, are complex challenges for achieving microbiome-based agriculture. Here, we study how grafting and the choice of rootstock influences root-associated fungal communities in a grafted tomato system. We studied three tomato rootstocks (BHN589, RST-04-106, and Maxifort) grafted to a BHN589 scion and profiled the fungal communities in the endosphere and rhizosphere by sequencing the internal transcribed spacer (ITS2). The data provided evidence for a rootstock effect (explaining ~2% of the total captured variation, P < 0.01) on the fungal community. Moreover, the most productive rootstock, Maxifort, supported greater fungal species richness than the other rootstocks or controls. We then constructed a phenotype-operational taxonomic unit (OTU) network analysis (PhONA) using an integrated machine learning and network analysis approach based on fungal OTUs and associated tomato yield as the phenotype. PhONA provides a graphical framework to select a testable and manageable number of OTUs to support microbiome-enhanced agriculture. We identified differentially abundant OTUs specific to each rootstock in both endosphere and rhizosphere compartments. Subsequent analyses using PhONA identified OTUs that were directly associated with tomato fruit yield and others that were indirectly linked to yield through their links to these OTUs. Fungal OTUs that are directly or indirectly linked with tomato yield may represent candidates for synthetic communities to be explored in agricultural systems. IMPORTANCE The realized benefits of microbiome analyses for plant health and disease management are often limited by the lack of methods to select manageable and testable synthetic microbiomes. We evaluated the composition and diversity of root-associated fungal communities from grafted tomatoes. We then constructed a phenotype-OTU network analysis (PhONA) using these linear and network models. By incorporating yield data in the network, PhONA identified OTUs that were directly predictive of tomato yield and others that were indirectly linked to yield through their links to these OTUs. Follow-up functional studies of taxa associated with effective rootstocks, identified using approaches such as PhONA, could support the design of synthetic fungal communities for microbiome-based crop production and disease management. The PhONA framework is flexible for incorporation of other phenotypic data, and the underlying models can readily be generalized to accommodate other microbiome or 'omics data.


Assuntos
Microbiota , Micobioma , Solanum lycopersicum , Raízes de Plantas/microbiologia , Rizosfera
2.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413478

RESUMO

Root-associated microbes are critical to plant health and performance, although understanding of the factors that structure these microbial communities and the theory to predict microbial assemblages are still limited. Here, we use a grafted tomato system to study the effects of rootstock genotypes and grafting in endosphere and rhizosphere microbiomes that were evaluated by sequencing 16S rRNA. We compared the microbiomes of nongrafted tomato cultivar BHN589, self-grafted BHN589, and BHN589 grafted to Maxifort or RST-04-106 hybrid rootstocks. Operational taxonomic unit (OTU)-based bacterial diversity was greater in Maxifort compared to the nongrafted control, whereas bacterial diversity in the controls (self-grafted and nongrafted) and the other rootstock (RST-04-106) was similar. Grafting itself did not affect bacterial diversity; diversity in the self-graft was similar to that of the nongraft. Bacterial diversity was higher in the rhizosphere than in the endosphere for all treatments. However, despite the lower overall diversity, there was a greater number of differentially abundant OTUs (DAOTUs) in the endosphere, with the greatest number of DAOTUs associated with Maxifort. In a permutational multivariate analysis of variance (PERMANOVA), there was evidence for an effect of rootstock genotype on bacterial communities. The endosphere-rhizosphere compartment and study site explained a high percentage of the differences among bacterial communities. Further analyses identified OTUs responsive to rootstock genotypes in both the endosphere and rhizosphere. Our findings highlight the effects of rootstocks on bacterial diversity and composition. The influence of rootstock and plant compartment on microbial communities indicates opportunities for the development of designer communities and microbiome-based breeding to improve future crop production.IMPORTANCE Understanding factors that control microbial communities is essential for designing and supporting microbiome-based agriculture. In this study, we used a grafted tomato system to study the effect of rootstock genotypes and grafting on bacterial communities colonizing the endosphere and rhizosphere. To compare the bacterial communities in control treatments (nongrafted and self-grafted plants) with the hybrid rootstocks used by farmers, we evaluated the effect of rootstocks on overall bacterial diversity and composition. These findings indicate the potential for using plant genotype to indirectly select bacterial taxa. In addition, we identify taxa responsive to each rootstock treatment, which may represent candidate taxa useful for biocontrol and in biofertilizers.


Assuntos
Microbiota , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Solanum lycopersicum/microbiologia , Hibridização Genética , Solanum lycopersicum/genética , Melhoramento Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA