Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(2): 556-564, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38198134

RESUMO

The human brain efficiently processes only a fraction of visual information, a phenomenon termed attentional control, resulting in energy savings and heightened adaptability. Translating this mechanism into artificial visual neurons holds promise for constructing energy-efficient, bioinspired visual systems. Here, we propose a self-rectifying artificial visual neuron (SEVN) based on a NiO/Ga2O3 bipolar heterojunction with attentional control on patterns with a target color. The device exhibits short-term potentiation (STP) with quantum point contact (QPC) traits at low bias and transitions to long-term potentiation (LTP) at high bias, particularly facilitated by electron capture in deep defects upon ultraviolet (UV) exposure. With the utilization of two wavelengths of light upon the target and interference part of CAPTCHA to simulate top-down attentional control, the recognition accuracy is enhanced from 74 to 84%. These findings have the potential to augment the visual capability of neuromorphic systems with implications for diverse applications, including cybersecurity, healthcare, and machine vision.


Assuntos
Encéfalo , Sinapses , Humanos , Sinapses/fisiologia , Neurônios
2.
Nat Commun ; 14(1): 4459, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491528

RESUMO

Avalanche and surge robustness involve fundamental carrier dynamics under high electric field and current density. They are also prerequisites of any power device to survive common overvoltage and overcurrent stresses in power electronics applications such as electric vehicles, electricity grids, and renewable energy processing. Despite tremendous efforts to develop the next-generation power devices using emerging ultra-wide bandgap semiconductors, the lack of effective bipolar doping has been a daunting obstacle for achieving the necessary robustness in these devices. Here we report avalanche and surge robustness in a heterojunction formed between the ultra-wide bandgap n-type gallium oxide and the wide-bandgap p-type nickel oxide. Under 1500 V reverse bias, impact ionization initiates in gallium oxide, and the staggered band alignment favors efficient hole removal, enabling a high avalanche current over 50 A. Under forward bias, bipolar conductivity modulation enables the junction to survive over 50 A surge current. Moreover, the asymmetric carrier lifetime makes the high-level carrier injection dominant in nickel oxide, enabling a fast reverse recovery within 15 ns. This heterojunction breaks the fundamental trade-off between robustness and switching speed in conventional homojunctions and removes a key hurdle to advance ultra-wide bandgap semiconductor devices for power industrial applications.

3.
J Phys Chem Lett ; 13(30): 7094-7099, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35900195

RESUMO

Surface treatment after dry etching is vital to enhance the surface quality of the material and thus improve device performance. In this Letter, we identified the majority surface states induced by the dry etching of ß-Ga2O3 and optimized surface treatments to suppress these electrically active defects with the improved performance of Schottky barrier diodes. Transient spectroscopies suggested that the majority traps (EC-0.75 eV) related to divacancies (VGa-VO) were enhanced in the concentration of 3.37 × 1014 cm-3 by dry etching and reduced to 0.90 × 1014 cm-3 by the combined means of oxygen annealing and piranha solution treatment. The trap evolution is supported by the suppressed donor-acceptor pair radiative recombination related to oxygen vacancies, the improved carrier transport (negligible hysteresis current-voltage and unity ideality factor), and the reduced surface band bending. These findings provide a straightforward strategy to improve surface quality for the further performance improvement of Ga2O3 power diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA