Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 292: 112834, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34049056

RESUMO

In order to better achieve efficiently simultaneous desulfurization and denitrification/S0 recovery of wastewater, the intervention of sulfur oxidizing bacteria (SOB) and denitrifying bacteria (DNB) was employed to avoid the collapse critical points (the dramatically decrease of S/N removal efficiency) under the fluctuated load. With the assistance of DNB and SOB, collapse critical point of trickling filter (TF) was delayed from the P8 (105-114 d) to P10 stage (129-138 d). The treatment efficiency of nitrogen and sulfur was the highest with the S/N ratio of 3:1. The bioaugmentation of DNB and SOB at collapse critical point could effectively regulated collapse situation, which further increased the maximum system utilization/elimination capacity to 4.50 kg S m-3·h-1 and 0.90 kg N m-3·h-1 (increased by 56.89% and 65.56% in comparison to control). High-throughput sequencing analysis indicated that Proteobacteria (average 78.59%) and Bacteroidetes (average 9.30%) were dominant bacteria in the reactor at all stages. As the reaction proceeds, the microbial community was gradually dominated by some functional genera such as Chryseobacterium (average 2.97%), Halothiobacillus (average 22.71%), Rhodanobacter (average 14.02%), Thiobacillus (average 9.01%), Thiomonas (average 16.70%) and Metallibacterium (average 21.63%), which could remove nitrate or sulfide. Both of Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) demonstrated the important role of DNB/SOB during the long-term run in the trickling filters (TFs).


Assuntos
Desnitrificação , Águas Residuárias , Reatores Biológicos , Nitratos , Nitrogênio , Enxofre
2.
Bioresour Technol ; 351: 127017, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35306135

RESUMO

Bioaugmentation of extracellular polymeric substances-producing bacteria was applied in pollutant removal and S0 recovery from composite wastewater in a mixotrophic denitrification system. In the presence of 200 mg·L-1 S2- and 50 mg·L-1 Cr(VI), the removal efficiencies of chemical oxygen demand, NO3-, S2- and Cr(VI) were 86.38%, 91.82%, 95.75%, and 100.00% respectively, while S0 recovery efficiency reached 79.17%. Increased contents of protein and polysaccharide, especially the high ratio of protein/polysaccharide verified the structural stability of biofilm was promoted by biofilm enhancement. The widespread distribution of bacteria/extracellular polymeric substance (EPS) revealed the more obvious biofilms formation in biofilm-enhanced group. High-throughput sequencing analysis showed that EPS-producing bacteria (Flavobacterium, Thauera, Thiobacillus and Simplicispira) were dominant bacteria in the biofilm-enhanced group. Moreover, by comprehensive considering of redundancy analysis, the colonization of selected bacteria improved the robustness of the reactor and treatment performance to wastewater contained toxic pollutions.


Assuntos
Poluentes Ambientais , Águas Residuárias , Bactérias/genética , Bactérias/metabolismo , Biofilmes , Reatores Biológicos/microbiologia , Cromo , Desnitrificação , Poluentes Ambientais/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química
3.
Bioresour Technol ; 320(Pt A): 124329, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33142251

RESUMO

Bioaugmentation was conducted using a bacterial consortium of Pseudomonas putida SW-3 and Rhodococcus ruber SS-4, to test their ability to degrade benzene, toluene, and styrene (BTS). SW-3 and SS-4 were isolated from domestic sludge and sewage samples to establish a synthetic consortium with an optimized ratio of 2:1 to reach a degradation efficiency of 82.5-89.8% of BTS. The bacterial consortium was inoculated with sludge and sewage samples at a ratio of 2:1, resulting in a degradation efficiency of 97.9% and 92.7%, respectively, at a BTS concentration of 1800 mg·L-1. Analysis of bacterial community structure following bioaugmentation indicated an increase in abundance of BTS-degrading bacteria, particularly Acinetobacter and Pseudoxanthomonas in sludge and Pseudomonas in sewage, enhancing the collective BTS degradation ability of the bacterial community. Principal component analysis demonstrated that a more balanced bacterial community structure was established following intervention. This indicated that the selected bacteria are excellent candidates for bioaugmentation.


Assuntos
Rhodococcus , Esgotos , Benzeno , Biodegradação Ambiental , Pseudomonas , Estireno , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA