Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Bioorg Chem ; 150: 107528, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38852309

RESUMO

ß-Lactamases are bacterial enzymes that inactivate ß-lactam antibiotics and, as such, are the most prevalent cause of antibiotic resistance in Gram-negative bacteria. The ever-increasing production and worldwide dissemination of bacterial strains producing carbapenemases is currently a global health concern. These enzymes catalyze the hydrolysis of carbapenems - the ß-lactam antibiotics with the broadest spectrum of activity that are often considered as drugs of last resort. The incidence of carbapenem-resistant pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and carbapenemase or extended spectrum beta-lactamase (ESBL)-producing Enterobacterales, which are frequent in clinical settings, is worrisome since, in some cases, no therapies are available. These include all metallo-ß-lactamases (VIM, IMP, NDM, SMP, and L1), and serine-carbapenemases of classes A (KPC, SME, IMI, and GES), and of classes D (OXA-23, OXA-24/40, OXA-48 and OXA-58). Consequently, the early diagnosis of bacterial strains harboring carbapenemases is a pivotal task in clinical microbiology in order to track antibiotic bacterial resistance and to improve the worldwide management of infectious diseases. Recent research efforts on the development of chromogenic and fluorescent chemical sensors for the specific and sensitive detection and quantification of ß-lactamase production in multidrug-resistant pathogens are summarized herein. Studies to circumvent the main limitations of the phenotypic and molecular methods are discussed. Recently reported chromogenic and fluorogenic cephalosporin- and carbapenem-based ß-lactamase substrates will be reviewed as alternative options to the currently available nitrocefin and related compounds, a chromogenic cephalosporin-based reagent widely used in clinical microbiology laboratories. The scope of these new chemical sensors, along with the synthetic approaches to synthesize them, is also summarized.

2.
Antimicrob Agents Chemother ; 67(5): e0150522, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195077

RESUMO

Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Carbapenêmicos/farmacologia , Sideróforos/farmacologia , Cefalosporinas/farmacologia , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Cefiderocol
3.
Bioorg Med Chem Lett ; 87: 129282, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031730

RESUMO

The success of precision medicine coupled with the disappointing impact of broad-spectrum antibiotic use on microbiome stability and bacterial resistance, has triggered a shift in antibiotic design strategies toward precision antibiotics. This also includes the implementation of novel vectorization approaches directed to improve the internalization of antibacterial agents into deadly gram-negative pathogens through precise and well-defined mechanisms. The conjugation of antibiotics to siderophores (iron scavengers), which are compounds that are able to afford stable iron-complexes that facilitate the internalization into the cell by using bacterial iron uptake pathways as gateways, is a strategy that has begun to show excellent results with the commercialization of the first antibiotic based on this principle, cefiderocol. This digests review provides an overview of the molecular basis for this antibiotic-siderophore conjugation approach, along with recent successful examples and highlights future challenges facing this booming research area.


Assuntos
Antibacterianos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Sideróforos/química , Sideróforos/metabolismo , Ferro/metabolismo
4.
Antimicrob Agents Chemother ; 66(2): e0206721, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34930034

RESUMO

Infections caused by ceftolozane-tazobactam and ceftazidime-avibactam-resistant P. aeruginosa infections are an emerging concern. We aimed to analyze the underlying ceftolozane-tazobactam and ceftazidime-avibactam resistance mechanisms in all multidrug-resistant or extensively drug-resistant (MDR/XDR) P. aeruginosa isolates recovered during 1 year (2020) from patients with a documented P. aeruginosa infection. Fifteen isolates showing ceftolozane-tazobactam and ceftazidime-avibactam resistance were evaluated. Clinical conditions, previous positive cultures, and ß-lactams received in the previous month were reviewed for each patient. MICs were determined by broth microdilution. Multilocus sequence types (MLSTs) and resistance mechanisms were determined using short- and long-read whole-genome sequencing (WGS). The impact of Pseudomonas-derived cephalosporinases (PDCs) on ß-lactam resistance was demonstrated by cloning into an ampC-deficient PAO1 derivative (PAOΔC) and construction of 3D models. Genetic support of acquired ß-lactamases was determined in silico from high-quality hybrid assemblies. In most cases, the isolates were recovered after treatment with ceftolozane-tazobactam or ceftazidime-avibactam. Seven isolates from different sequence types (STs) owed their ß-lactam resistance to chromosomal mutations and all displayed specific substitutions in PDC: Phe121Leu and Gly222Ser, Pro154Leu, Ala201Thr, Gly214Arg, ΔGly203-Glu219, and Glu219Lys. In the other eight isolates, the ST175 clone was overrepresented (6 isolates) and associated with IMP-28 and IMP-13, whereas two ST1284 isolates produced VIM-2. The cloned PDCs conferred enhanced cephalosporin resistance. The 3D PDC models revealed rearrangements affecting residues involved in cephalosporin hydrolysis. Carbapenemases were chromosomal (VIM-2) or plasmid-borne (IMP-28, IMP-13) and associated with class-1 integrons located in Tn402-like transposition modules. Our findings highlighted that cephalosporin/ß-lactamase inhibitors are potential selectors of MDR/XDR P. aeruginosa strains producing PDC variants or metallo-ß-lactamases. Judicious use of these agents is encouraged.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Proteínas de Bactérias , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Tazobactam/farmacologia , Tazobactam/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/uso terapêutico
5.
J Antimicrob Chemother ; 76(1): 91-100, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33083833

RESUMO

BACKGROUND: The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning. OBJECTIVES: Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections. METHODS: Four paired ceftolozane/tazobactam- and ceftazidime/avibactam-susceptible/resistant isolates were evaluated. MICs were determined by broth microdilution. STs, resistance mechanisms and genetic context of ß-lactamases were determined by genotypic methods, including WGS. The OXA-10 variants were cloned in PAO1 to assess their impact on resistance. Models for the OXA-10 derivatives were constructed to evaluate the structural impact of the amino acid changes. RESULTS: The same XDR ST253 P. aeruginosa clone was detected in all four cases evaluated. All initial isolates showed OprD deficiency, produced an OXA-10 enzyme and were susceptible to ceftazidime, ceftolozane/tazobactam, ceftazidime/avibactam and colistin. During treatment, the isolates developed resistance to all cephalosporins. Comparative genomic analysis revealed that the evolved resistant isolates had acquired mutations in the OXA-10 enzyme: OXA-14 (Gly157Asp), OXA-794 (Trp154Cys), OXA-795 (ΔPhe153-Trp154) and OXA-824 (Asn143Lys). PAO1 transformants producing the evolved OXA-10 derivatives showed enhanced ceftolozane/tazobactam and ceftazidime/avibactam resistance but decreased meropenem MICs in a PAO1 background. Imipenem/relebactam retained activity against all strains. Homology models revealed important changes in regions adjacent to the active site of the OXA-10 enzyme. The blaOXA-10 gene was plasmid borne and acquired due to transposition of Tn6746 in the pHUPM plasmid scaffold. CONCLUSIONS: Modification of OXA-10 is a mechanism involved in the in vivo acquisition of resistance to cephalosporin/ß-lactamase inhibitor combinations in P. aeruginosa.


Assuntos
Ceftazidima , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , beta-Lactamases/genética
6.
J Antimicrob Chemother ; 75(11): 3209-3217, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32728723

RESUMO

BACKGROUND: Pseudomonas aeruginosa may develop resistance to novel cephalosporin/ß-lactamase inhibitor combinations during therapy through the acquisition of structural mutations in AmpC. OBJECTIVES: To describe the molecular and biochemical mechanisms involved in the development of resistance to ceftolozane/tazobactam in vivo through the selection and overproduction of a novel AmpC variant, designated PDC-315. METHODS: Paired susceptible/resistant isolates obtained before and during ceftolozane/tazobactam treatment were evaluated. MICs were determined by broth microdilution. Mutational changes were investigated through WGS. Characterization of the novel PDC-315 variant was performed through genotypic and biochemical studies. The effects at the molecular level of the Asp245Asn change were analysed by molecular dynamics simulations using Amber. RESULTS: WGS identified mutations leading to modification (Asp245Asn) and overproduction of AmpC. Susceptibility testing revealed that PAOΔC producing PDC-315 displayed increased MICs of ceftolozane/tazobactam, decreased MICs of piperacillin/tazobactam and imipenem and similar susceptibility to ceftazidime/avibactam compared with WT PDCs. The catalytic efficiency of PDC-315 for ceftolozane was 10-fold higher in relation to the WT PDCs, but 3.5- and 5-fold lower for piperacillin and imipenem. IC50 values indicated strong inhibition of PDC-315 by avibactam, but resistance to cloxacillin inhibition. Analysis at the atomic level explained that the particular behaviour of PDC-315 is linked to conformational changes in the H10 helix that favour the approximation of key catalytic residues to the active site. CONCLUSIONS: We deciphered the precise mechanisms that led to the in vivo emergence of resistance to ceftolozane/tazobactam in P. aeruginosa through the selection of the novel PDC-315 enzyme. The characterization of this new variant expands our knowledge about AmpC-mediated resistance to cephalosporin/ß-lactamase inhibitors in P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia
7.
Chemistry ; 26(36): 8035-8044, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32259333

RESUMO

Disabling the bacterial capacity to cause infection is an innovative approach that has attracted significant attention to fight against superbugs. A relevant target for anti-virulence drug discovery is the type I dehydroquinase (DHQ1) enzyme. It was shown that the 2-hydroxyethylammonium derivative 3 has in vitro activity since it causes the covalent modification of the catalytic lysine residue of DHQ1. As this compound does not bear reactive electrophilic centers, how the chemical modification occurs is intriguing. We report here an integrated approach, which involves biochemical studies, X-ray crystallography and computational studies on the reaction path using combined quantum mechanics/molecular mechanics Umbrella Sampling Molecular Dynamics, that evidences that DHQ1 catalyzes its self-immolation by transforming the unreactive 2-hydroxyethylammonium group in 3 into an epoxide that triggers the lysine covalent modification. This finding might open opportunities for the design of lysine-targeted irreversible inhibitors bearing a 2-hydroxyethylammonium moiety as an epoxide proform, which to our knowledge has not been reported previously.


Assuntos
Bactérias/química , Inibidores Enzimáticos/química , Compostos de Epóxi/química , Hidroliases/química , Bactérias/metabolismo , Catálise , Descoberta de Drogas , Hidroliases/metabolismo , Lisina , Simulação de Dinâmica Molecular
8.
Chemistry ; 26(68): 15922-15930, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32585059

RESUMO

Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax =550 nm) to ICT states (λmax =480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.


Assuntos
Antineoplásicos , Lapatinib , Antineoplásicos/química , Humanos , Lapatinib/química , Simulação de Dinâmica Molecular , Albumina Sérica Humana/química , Análise Espectral
9.
Artigo em Inglês | MEDLINE | ID: mdl-31383659

RESUMO

Selection of extended-spectrum mutations in narrow-spectrum oxacillinases (e.g., OXA-2 and OXA-10) is an emerging mechanism for development of in vivo resistance to ceftolozane-tazobactam and ceftazidime-avibactam in Pseudomonas aeruginosa Detection of these challenging enzymes therefore seems essential to prevent clinical failure, but the complex phenotypic plasticity exhibited by this species may often lead to their underestimation. The underlying resistance mechanisms of two sequence type 175 (ST175) P. aeruginosa isolates showing multidrug-resistant phenotypes and recovered at early and late stages of a long-term nosocomial infection were evaluated. Whole-genome sequencing (WGS) was used to investigate resistance genomics, whereas molecular and biochemical methods were used for characterization of a novel extended-spectrum OXA-2 variant selected during therapy. The metallo-ß-lactamase blaVIM-20 and the narrow-spectrum oxacillinase blaOXA-2 were present in both isolates, although they differed by an inactivating mutation in the mexB subunit, present only in the early isolate, and in a mutation in the blaOXA-2 ß-lactamase, present only in the final isolate. The new OXA-2 variant, designated OXA-681, conferred elevated MICs of the novel cephalosporin-ß-lactamase inhibitor combinations in a PAO1 background. Compared to OXA-2, kinetic parameters of the OXA-681 enzyme revealed a substantial increase in the hydrolysis of cephalosporins, including ceftolozane. We describe the emergence of the novel variant OXA-681 during treatment of a nosocomial infection caused by a Pseudomonas aeruginosa ST175 high-risk clone. The ability of OXA-681 to confer cross-resistance to ceftolozane-tazobactam and ceftazidime-avibactam together with the complex antimicrobial resistance profiles exhibited by the clinical strains harboring this new enzyme argue for maintaining active surveillance on emerging broad-spectrum resistance in P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Combinação de Medicamentos , Humanos , Cinética , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Sequenciamento Completo do Genoma , beta-Lactamases/genética , beta-Lactamases/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-31383666

RESUMO

The carbapenem-hydrolyzing class D ß-lactamases (CHDLs) are the main mechanism of carbapenem resistance in Acinetobacter baumannii CHDLs are not effectively inactivated by clinically available ß-lactam-type inhibitors. We have previously described the in vitro efficacy of the inhibitor LN-1-255 in combination with carbapenems. The aim of this study was to compare the efficacy of LN-1-255 with that of imipenem in murine pneumonia using A. baumannii strains carrying their most extended carbapenemases, OXA-23 and OXA-24/40. The blaOXA-23 and blaOXA-24/40 genes were cloned into the carbapenem-susceptible A. baumannii ATCC 17978 strain. Clinical isolates Ab1 and JC12/04, producing the enzymes OXA-23 and OXA-24/40, respectively, were used in the study. Pharmacokinetic (PK) parameters were determined. An experimental pneumonia model was used to evaluate the efficacy of the combined imipenem-LN-1-255 therapy. MICs of imipenem decreased between 32- and 128-fold in the presence of LN-1-255. Intramuscular treatment with imipenem-LN-1-255 (30/50 mg/kg) decreased the bacterial burden by (i) 4 and 1.7 log10 CFU/g lung in the infection with the ATCC 17978-OXA-23 and Ab1 strains, respectively, and by (ii) 2.5 and 4.5 log10 CFU/g lung in the infection produced by the ATCC 17978-OXA-24/40 and the JC12/04 strains, respectively. In all assays, combined therapy offered higher protection against pneumonia than that provided by monotherapy. No toxicity was observed in treated mice. Imipenem treatment combined with LN-1-255 treatment significantly reduced the severity of infection by carbapenem-resistant A. baumannii strains carrying CHDLs. Preclinical assays demonstrated the potential of LN-1-255 and imipenem therapy as a new antibacterial treatment.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Anti-Infecciosos/uso terapêutico , Óxidos S-Cíclicos/uso terapêutico , Imipenem/uso terapêutico , Penicilinas/uso terapêutico , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo
11.
J Org Chem ; 83(21): 13019-13029, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30274513

RESUMO

Latent electrophiles are nowadays very attractive chemical entities for drug discovery, as they are unreactive unless activated upon binding with the specific target. In this work, the utility of 4-trifluoromethyl phenols as precursors of latent electrophiles, quinone methides (QM), for lysine-targeting is demonstrated. These Michael acceptors were photogenerated for specific covalent modification of lysine residues using human serum albumin (HSA) as a model target. The reactive QM-type intermediates I or II, generated upon irradiation of 4-trifluoromethyl-1-naphthol (1)@HSA or 4-(4-trifluorometylphenyl)phenol (2)@HSA complexes, exhibited chemoselective reactivity toward lysine residues leading to amide adducts, which was confirmed by proteomic analysis. For ligand 1, the covalent modification of residues Lys106 and Lys414 (located in subdomains IA and IIIA, respectively) was observed, whereas for ligand 2, the modification of Lys195 (in subdomain IIA) took place. Docking and molecular dynamics simulation studies provided an insight into the molecular basis of the selectivity of 1 and 2 for these HSA subdomains and the covalent modification mechanism. These studies open the opportunity of performing protein silencing by generating reactive ligands under very mild conditions (irradiation) for specific covalent modification of hidden lysine residues.

12.
Org Biomol Chem ; 16(24): 4443-4455, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29767194

RESUMO

Type II dehydroquinase enzymes (DHQ2), recognized targets for antibiotic drug discovery, show significantly different activities dependent on the species: DHQ2 from Mycobacterium tuberculosis (MtDHQ2) and Helicobacter pylori (HpDHQ2) show a 50-fold difference in catalytic efficiency. Revealing the determinants of this activity difference is important for our understanding of biological catalysis and further offers the potential to contribute to tailoring specificity in drug design. Molecular dynamics simulations using a quantum mechanics/molecular mechanics potential, with correlated ab initio single point corrections, identify and quantify the subtle determinants of the experimentally observed difference in efficiency. The rate-determining step involves the formation of an enolate intermediate: more efficient stabilization of the enolate and transition state of the key step in MtDHQ2, mainly by the essential residues Tyr24 and Arg19, makes it more efficient than HpDHQ2. Further, a water molecule, which is absent in MtDHQ2 but involved in generation of the catalytic Tyr22 tyrosinate in HpDHQ2, was found to destabilize both the transition state and the enolate intermediate. The quantification of the contribution of key residues and water molecules in the rate-determining step of the mechanism also leads to improved understanding of higher potencies and specificity of known inhibitors, which should aid ongoing inhibitor design.


Assuntos
Biocatálise , Hidroliases/química , Sequência de Aminoácidos , Arginina/química , Ácido Aspártico/química , Domínio Catalítico , Helicobacter pylori/enzimologia , Modelos Químicos , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/enzimologia , Teoria Quântica , Tirosina/química , Água/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-28807908

RESUMO

The number of infections caused by Gram-negative pathogens carrying carbapenemases is increasing, and the group of carbapenem-hydrolyzing class D ß-lactamases (CHDLs) is especially problematic. Several clinically important CHDLs have been identified in Acinetobacter baumannii, including OXA-23, OXA-24/40, OXA-58, OXA-143, OXA-235, and the chromosomally encoded OXA-51. The selection and dissemination of carbapenem-resistant A. baumannii strains constitutes a serious global threat. Carbapenems have been successfully utilized as last-resort antibiotics for the treatment of multidrug-resistant A. baumannii infections. However, the spread of OXA carbapenemases is compromising the continued use of these antimicrobials. In response to this clinical issue, it is necessary and urgent to design and develop new specific inhibitors with efficacy against these enzymes. The aim of this work was to characterize the inhibitory activity of LN-1-255 (a 6-alkylidene-2-substituted penicillin sulfone) and compare it to that of two established inhibitors (avibactam and tazobactam) against the most relevant enzymes of each group of class D carbapenemases in A. baumannii The ß-lactamase inhibitor LN-1-255 demonstrated excellent microbiological synergy and inhibition kinetics parameters against all tested CHDLs and a significantly higher activity than tazobactam and avibactam. A combination of carbapenems and LN-1-255 was effective against A. baumannii class D carbapenemases. Docking assays confirmed the affinity of LN-1-255 for the active site of these enzymes. LN-1-255 represents a potential new ß-lactamase inhibitor that may have a significant role in eradicating infections caused by A. baumannii isolates carrying CHDLs.


Assuntos
Acinetobacter baumannii/enzimologia , Óxidos S-Cíclicos/farmacologia , Penicilinas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Compostos Azabicíclicos/farmacologia , Carbapenêmicos/farmacologia , Domínio Catalítico , Cefalosporinas/farmacologia , Humanos , Hidrólise , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/farmacologia , Tazobactam
14.
Chemistry ; 23(56): 13986-13994, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28791745

RESUMO

The covalent binding of ß-lactams to proteins upon photochemical activation has been demonstrated by using an integrated approach that combines photochemical, proteomic and computational studies, selecting human serum albumin (HSA) as a target protein and ezetimibe (1) as a probe. The results have revealed a novel protein haptenation pathway for this family of drugs that is an alternative to the known nucleophilic ring opening of ß-lactams by the free amino group of lysine residues. Thus, photochemical ring splitting of the ß-lactam ring, following a formal retro-Staudinger reaction, gives a highly reactive ketene intermediate that is trapped by the neighbouring lysine residues, leading to an amide adduct. For the investigated 1/HSA system, covalent modification of residues Lys414 and Lys525, which are located in sub-domains IIIA and IIIB, respectively, occurs. The observed photobinding may constitute the key step in the sequence of events leading to photoallergy. Docking and molecular dynamics simulation studies provide an insight into the molecular basis of the selectivity of 1 for these HSA sub-domains and the covalent modification mechanism. Computational studies also reveal positive cooperative binding of sub-domain IIIB that explains the experimentally observed modification of Lys414, which is located in a barely accessible pocket (sub-domain IIIA).


Assuntos
Albumina Sérica/metabolismo , beta-Lactamas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Ezetimiba/química , Ezetimiba/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Albumina Sérica/química , Espectrometria de Massas em Tandem , Raios Ultravioleta , beta-Lactamas/química
15.
Bioorg Med Chem Lett ; 27(18): 4221-4228, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28827113

RESUMO

Resistance to available antibiotics in pathogenic bacteria is currently a global challenge since the number of strains that are resistant to multiple types of antibiotics has increased dramatically each year and has spread worldwide. To unlock this problem, the use of an 'antibiotic adjuvant' in combination with an antibiotic is now being exploited. This approach enables us to prolong the lifespan of these life-saving drugs. This digests review provides an overview of the main types of antibiotic adjuvants, the basis of their operation and the remaining issues to be tackled in this field. Particular emphasis is placed on those compounds that are already in clinical development, namely ß-lactamase inhibitors.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Animais , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
16.
J Antimicrob Chemother ; 71(8): 2171-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27125555

RESUMO

OBJECTIVES: Carbapenemases are the most important mechanism responsible for carbapenem resistance in Enterobacteriaceae. Among carbapenemases, OXA-48 presents unique challenges as it is resistant to ß-lactam inhibitors. Here, we test the capacity of the compound LN-1-255, a 6-alkylidene-2'-substituted penicillanic acid sulfone, to inhibit the activity of the carbapenemase OXA-48. METHODS: The OXA-48 gene was cloned and expressed in Klebsiella pneumoniae and Escherichia coli in order to obtain MICs in the presence of inhibitors (clavulanic acid, tazobactam and sulbactam) and LN-1-255. OXA-48 was purified and steady-state kinetics was performed with LN-1-255 and tazobactam. The covalent binding mode of LN-1-255 with OXA-48 was studied by docking assays. RESULTS: Both OXA-48-producing clinical and transformant strains displayed increased susceptibility to carbapenem antibiotics in the presence of 4 mg/L LN-1-255 (2-32-fold increased susceptibility) and 16 mg/L LN-1-255 (4-64-fold increased susceptibility). Kinetic assays demonstrated that LN-1-255 is able to inhibit OXA-48 with an acylation efficiency (k2/K) of 10 ±â€Š1 × 10(4) M(-1) s(-1) and a slow deacylation rate (koff) of 7 ±â€Š1 × 10(-4) s(-1). IC50 was 3 nM for LN-1-255 and 1.5 µM for tazobactam. Lastly, kcat/kinact was 500-fold lower for LN-1-255 than for tazobactam. CONCLUSIONS: In these studies, carbapenem antibiotics used in combination with LN-1-255 are effective against the carbapenemase OXA-48, an important emerging mechanism of antibiotic resistance. This provides an incentive for further investigations to maximize the efficacy of penicillin sulfone inhibition of class D plasmid-carried Enterobacteriaceae carbapenemases.


Assuntos
Óxidos S-Cíclicos/metabolismo , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Penicilinas/metabolismo , Sulbactam/metabolismo , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Cinética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Ligação Proteica , beta-Lactamases/isolamento & purificação
17.
Chemistry ; 22(50): 17988-18000, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27699905

RESUMO

Shikimate kinase (SK), the fifth enzyme of the aromatic amino acid biosynthesis, is a recognized target for antibiotic drug discovery. The potential of the distinct dynamic apolar gap, which isolates the natural substrate from the solvent environment for catalysis, and the motion of Mycobacterium tuberculosis and Helicobacter pylori SK enzymes, which was observed by molecular dynamics simulations, was explored for inhibition selectivity. The results of the biochemical and computational studies reveal that the incorporation of bulky groups at position C5 of 5-aminoshikimic acid and the natural substrate enhances the selectivity for the H. pylori enzyme due to key motion differences in the shikimic acid binding domain (mainly helix α5). These studies show that the less-exploited motion-based design approach not only is an alternative strategy for the development of competitive inhibitors, but could also be a way to achieve selectivity against a particular enzyme among its homologues.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/síntese química , Helicobacter pylori/enzimologia , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ácido Chiquímico/análogos & derivados , Antibacterianos/farmacologia , Inibidores Enzimáticos/química , Congelamento , Helicobacter pylori/química , Mycobacterium tuberculosis/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Ácido Chiquímico/química
18.
Chemistry ; 22(8): 2758-68, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797764

RESUMO

The phosphoryl-transfer mechanism of shikimate kinase from Mycobacterium tuberculosis and Helicobacter pylori, which is an attractive target for antibiotic drug discovery, has been studied by 1D (1)H and (31)P NMR spectroscopy. Metaphosphoric acid proved to be a good mimetic of the metaphosphate intermediate and facilitated the ready and rapid evaluation by NMR spectroscopic analysis of a dissociative mechanism. The required closed form of the active site for catalysis was achieved by the use of ADP (product) or two synthetic ADP analogues (AMPNP, AMPCP). Molecular dynamics simulation studies reported here also revealed that the essential arginine (Arg116/Arg117 in H. pylori and M. tuberculosis, respectively), which activates the γ-phosphate group of ATP for catalysis and triggers the release of the product for turnover, would also be involved in the stabilisation of the metaphosphate intermediate during catalysis. We believe that the studies reported here will be helpful for future structure-based design of inhibitors of this attractive target. The approach is also expected be useful for studies on the possible dissociative mechanism of other kinase enzymes.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/análogos & derivados , Helicobacter pylori/enzimologia , Mycobacterium tuberculosis/enzimologia , Ácidos Fosforosos/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Helicobacter pylori/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
19.
J Am Chem Soc ; 137(29): 9333-43, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26148116

RESUMO

The first example of an ammonium derivative that causes a specific modification of the active site of type I dehydroquinase (DHQ1), a dehydratase enzyme that is a promising target for antivirulence drug discovery, is described. The resolution at 1.35 Å of the crystal structure of DHQ1 from Salmonella typhi chemically modified by this ammonium derivative revealed that the ligand is covalently attached to the essential Lys170 through the formation of an amine. The detection by mass spectroscopy of the reaction intermediates, in conjunction with the results of molecular dynamics simulations, allowed us to explain the inhibition mechanism and the experimentally observed differences between S. typhi and Staphylococcus aureus enzymes. The results presented here reveal that the replacement of Phe225 in St-DHQ1 by Tyr214 in Sa-DHQ1 and its hydrogen bonding interaction with the conserved water molecule observed in several crystal structures protects the amino adduct against further dehydration/aromatization reactions. In contrast, for the St-DHQ1 enzyme, the carboxylate group of Asp114, with the assistance of this water molecule, would trigger the formation of a Schiff base that can undergo further dehydration reactions until full aromatization of the cyclohexane ring is achieved. Moreover, in vitro antivirulence studies showed that the reported compound is able to reduce the ability of Salmonella Enteritidis to kill A459 respiratory cells. These studies have identified a good scaffold for the design of irreversible inhibitors that can be used as drugs and has opened up new opportunities for the development of novel antivirulence agents by targeting the DHQ1 enzyme.


Assuntos
Compostos de Amônio/química , Compostos de Amônio/farmacologia , Domínio Catalítico/efeitos dos fármacos , Hidroliases/antagonistas & inibidores , Hidroliases/química , Salmonella typhi/enzimologia , Staphylococcus aureus/enzimologia , Compostos de Amônio/metabolismo , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidroliases/metabolismo , Simulação de Dinâmica Molecular , Salmonella typhi/patogenicidade , Virulência
20.
Org Biomol Chem ; 13(3): 706-16, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25370445

RESUMO

The irreversible inhibition of type I dehydroquinase (DHQ1), the third enzyme of the shikimic acid pathway, is investigated by structural, biochemical and computational studies. Two epoxides, which are mimetics of the natural substrate, were designed as irreversible inhibitors of the DHQ1 enzyme and to study the binding requirements of the linkage to the enzyme. The epoxide with the S configuration caused the covalent modification of the protein whereas no reaction was obtained with its epimer. The first crystal structure of DHQ1 from Salmonella typhi covalently modified by the S epoxide, which is reported at 1.4 Å, revealed that the modified ligand is surprisingly covalently attached to the essential Lys170 by the formation of a stable Schiff base. The experimental and molecular dynamics simulation studies reported here highlight the huge importance of the conformation of the C3 carbon of the ligand for covalent linkage to this type of aldolase I enzyme, revealed the key role played by the essential His143 as a Lewis acid in this process and show the need for a neatly closed active site for catalysis.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Compostos de Epóxi/química , Hidroliases/química , Bases de Schiff/química , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Compostos de Epóxi/síntese química , Histidina/química , Hidroliases/antagonistas & inibidores , Ligação de Hidrogênio , Cinética , Ligantes , Lisina/química , Simulação de Dinâmica Molecular , Ligação Proteica , Salmonella typhi/química , Salmonella typhi/enzimologia , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA