Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 49(11): 3263-3266, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824379

RESUMO

Topological corner states have been used to develop topologically robust Fano-resonant systems immune to structural perturbations while preserving the ultra-sensitive profiles under external factors. In this work, we have extended the possibility of obtaining Fano-resonant systems by introducing type-II and type-III corner states with a large modal surface to this class of resonance. Through photonic lattices with low symmetry, such as C2, it is easy to obtain type-II and type-III corner states due to the tailoring of long-range interactions. Subsequently, one can combine topological cavities of type-II and type-III corner modes with topological waveguides obtained from a first-order topological insulating phase. Our results may pave the way to generate devices suitable for creating non-classical light applicable in quantum computing and ultra-sensitive sensors employing large-area topological states.

2.
J Phys Condens Matter ; 35(38)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37307846

RESUMO

Recent studies have shown that higher-order topologies in photonic systems lead to a robust enhancement of light-matter interactions. Moreover, higher-order topological phases have been extended to systems even without a band gap, as in Dirac semimetals. In this work, we propose a procedure to simultaneously generate two distinctive higher-order topological phases with corner states that allow a double resonant effect. This double resonance effect between the higher-order topological phases, was obtained from the design of a photonic structure with the ability to generate a higher-order topological (HOTI) insulator phase in the first bands and a higher-order Dirac half-metal phase (HODSM). Subsequently, using the corner states in both topological phases, we tuned the frequencies of both corner states such that they were separated in frequency by a second harmonic. This idea allowed us to obtain a double resonance effect with ultra-high overlap factors, and a considerable improvement in the nonlinear conversion efficiency. These results show the possibility of producing a second-harmonic generation with unprecedented conversion efficiencies in topological systems with simultaneous HOTI and HODSM phases. Furthermore, since the corner state in the HODSM phase presents an algebraic 1/rdecay, our topological system can be helpful in experiments about the generation of nonlinear Dirac-ligh-matter interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA