Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 129(1): 163-174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120667

RESUMO

BACKGROUND: Epigenomic dysregulation has been linked to solid tumour malignancies, including ovarian cancers. Profiling of re-programmed enhancer locations associated with disease has the potential to improve stratification and thus therapeutic choices. Ovarian cancers are subdivided into histological subtypes that have significant molecular and clinical differences, with high-grade serous carcinoma representing the most common and aggressive subtype. METHODS: We interrogated the enhancer landscape(s) of normal ovary and subtype-specific ovarian cancer states using publicly available data. With an initial focus on H3K27ac histone mark, we developed a computational pipeline to predict drug compound activity based on epigenomic stratification. Lastly, we substantiated our predictions in vitro using patient-derived clinical samples and cell lines. RESULTS: Using our in silico approach, we highlighted recurrent and privative enhancer landscapes and identified the differential enrichment of a total of 164 transcription factors involved in 201 protein complexes across the subtypes. We pinpointed SNS-032 and EHMT2 inhibitors BIX-01294 and UNC0646 as therapeutic candidates in high-grade serous carcinoma, as well as probed the efficacy of specific inhibitors in vitro. CONCLUSION: Here, we report the first attempt to exploit ovarian cancer epigenomic landscapes for drug discovery. This computational pipeline holds enormous potential for translating epigenomic profiling into therapeutic leads.


Assuntos
Carcinoma , Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Antígenos de Histocompatibilidade/uso terapêutico , Histona-Lisina N-Metiltransferase
2.
Mar Drugs ; 20(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286451

RESUMO

Microalgae have been identified as one of the most promising sources of novel bioactive compounds for biomedical applications, the food industry, and cosmetics. In the last decade, several biotechnological developments have facilitated the identification of a growing number of compounds as well as the study of optimal microalgae culture conditions for the production of biomass enriched in specific molecules of interest. In this study, two common commercial marine microalgae (Nannochloropsis oculata and Porphyridium purpureum) were cultured in standard and nutrient-stressed conditions and the obtained biomass extracts were assessed for their potential to inhibit cancer cell proliferation and migration as well as their antioxidant activity. Results from viability in 2D and 3D cancer cell models showed an enhancement of the antitumour activity of P. purpureum in the 3D model compared to 2D, together with a greater capacity to reduce the migration capacity of cancer cells with the biomass from nutrient-stressed conditions, whereas the antioxidant activity of N. oculata decreased when exposed to nutrient-stressed conditions. To date, this is one of the few studies that proves that controlled changes in large-scale culturing conditions such as nutrient depletion have a relevant impact in the bioactivity of the biomass on cancer cells.


Assuntos
Microalgas , Porphyridium , Microalgas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Biomassa , Extratos Vegetais/metabolismo
3.
Nanomedicine ; 29: 102258, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615338

RESUMO

High dose selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show any chemotherapeutic value of selenium at safe and tolerated doses (<90 µg/day). To enable the successful exploitation of selenium for cancer treatment, we evaluated inorganic selenium nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both SKOV-3 and OVCAR-3 ovarian cancer cell types SeNP treatment resulted in significant cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metastatic potential. The beneficial effects of SeNPs on ovarian cancer cell death appear cell type dependent, and due to their low in vivo toxicity offer an exciting opportunity for future cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Nanopartículas Metálicas/química , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Selênio/química , Selênio/farmacologia
4.
Biomed Microdevices ; 21(2): 36, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923927

RESUMO

Infections of the female reproductive tract are a major cause of morbidity and mortality in humans, requiring significant investment to sustain treatment and representing a major challenge to health. The increasing prevalence of bacterial resistance, and an almost complete absence of new antibiotic therapies for the past five decades, mean there is a desperate need for novel approaches to the treatment of bacterial infections. Within the present study, we demonstrate the effective ex vivo treatment of bacterial infection of the female reproductive tract using a controlled-release, liquid crystal-based platform. Liquid crystal encapsulation of ciprofloxacin significantly enhanced its bactericidal efficacy and reduced cell toxicity. Liquid crystal structures are low-cost, simple to manufacture and provide a sustained-release profile of encapsulated ciprofloxacin. Treatment of Escherichia coli infected reproductive tract epithelial cells and whole organ cultures with liquid crystal encapsulated ciprofloxacin proved to be an effective strategy for reducing bacterial load and reproductive tract inflammatory responses to infection. These data suggest that such an approach could provide an efficacious treatment modality for enhancing the effectiveness of current antibiotic therapies.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Portadores de Fármacos/química , Cristais Líquidos/química , Infecções do Sistema Genital/tratamento farmacológico , Antibacterianos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/toxicidade , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Feminino , Células HeLa , Humanos , Cristais Líquidos/toxicidade , Testes de Sensibilidade Microbiana
5.
Nanomedicine ; 17: 254-265, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30759370

RESUMO

New approaches to treat ovarian cancer, the fifth leading cause of cancer mortality among women, are being sought, with the targeting of epigenetic modulators now receiving much attention. The histone acetyltransferase HBO1 functions in regulating diverse molecular processes, including DNA repair, transcription and replication, and is highly expressed in primary ovarian cancer. Here we define both the molecular function and a role in cell biomechanics for HBO1 in ovarian cancer. HBO1 preferentially acetylates histone H4 through the concomitant overexpression of co-regulator JADE2, and is required for the expression of YAP1, an ovarian cancer oncogene and mechano-transductor signaling factor. HBO1 appears therefore to have a role in determining the mechano-phenotype in ovarian cancer cells, through both signal transduction processes, and the modulation of cell elasticity as observed using direct measurements on live cells via atomic force microscopy.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Neoplasias Ovarianas/metabolismo , Acetilação , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Elasticidade , Feminino , Humanos , Mecanotransdução Celular , Neoplasias Ovarianas/patologia
6.
Nanomedicine ; 14(7): 2235-2245, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30031940

RESUMO

During decidualization, human mesenchymal-like endometrial stromal cells undergo well characterized cellular and molecular transformations in preparation for accepting a developing embryo. Modulation of cellular biophysical properties during decidualization is likely to be important in receptivity and support of the embryo in the uterus. Here we assess the biophysical properties of human endometrial stromal cells including topography, roughness, adhesiveness and stiffness in cells undergoing in vitro decidualization. A significant reduction in cell stiffness and surface roughness was observed following decidualization. These morphodynamical changes have been shown to be associated with alterations in cellular behavior and homeostasis, suggesting that localized endometrial cell biophysical properties play a role in embryo implantation and pregnancy. This cell-cell communication process is thought to restrict trophoblast invasion beyond the endometrial stroma, be essential in the establishment of pregnancy, and demonstrate the altered endometrial dynamics affecting cell-cell contact and migration regimes at this crucial interface in human reproduction.


Assuntos
Decídua/citologia , Implantação do Embrião , Endométrio/citologia , Células Epiteliais/citologia , Células Estromais/citologia , Adolescente , Adulto , Células Cultivadas , Decídua/ultraestrutura , Endométrio/ultraestrutura , Células Epiteliais/ultraestrutura , Feminino , Humanos , Microscopia Confocal , Gravidez , Células Estromais/ultraestrutura , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 111(7): 2500-5, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550274

RESUMO

Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.


Assuntos
Quinase 8 Dependente de Ciclina/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica/genética , Complexo Mediador/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Imunoprecipitação da Cromatina , Cromatografia Líquida , Immunoblotting , Espectrometria de Massas , Complexo Mediador/genética , Análise em Microsséries , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Técnicas do Sistema de Duplo-Híbrido
8.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745948

RESUMO

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Assuntos
Endométrio , Síndrome do Ovário Policístico , Receptores Androgênicos , Proteínas WT1 , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Endométrio/metabolismo , Endométrio/patologia , Proteínas WT1/metabolismo , Proteínas WT1/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Células Estromais/metabolismo , Células Estromais/patologia , Adulto , Sequências Reguladoras de Ácido Nucleico
9.
Redox Biol ; 61: 102641, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842241

RESUMO

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Assuntos
Quitosana , Selênio , Histonas/metabolismo , Metilação , Selênio/metabolismo , Lisina/metabolismo , S-Adenosil-Homocisteína/metabolismo , Antioxidantes/metabolismo , Quitosana/metabolismo , Histona-Lisina N-Metiltransferase/genética
10.
Antibodies (Basel) ; 12(4)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37873862

RESUMO

Antibody-drug conjugates (ADCs) constitute a rapidly expanding category of biopharmaceuticals that are reshaping the landscape of targeted chemotherapy. The meticulous process of selecting therapeutic targets, aided by specific monoclonal antibodies' high specificity for binding to designated antigenic epitopes, is pivotal in ADC research and development. Despite ADCs' intrinsic ability to differentiate between healthy and cancerous cells, developmental challenges persist. In this study, we present a rationalized pipeline encompassing the initial phases of the ADC development, including target identification and validation. Leveraging an in-house, computationally constructed ADC target database, termed ADC Target Vault, we identified a set of novel ovarian cancer targets. We effectively demonstrate the efficacy of Surface Plasmon Resonance (SPR) technology and in vitro models as predictive tools, expediting the selection and validation of targets as ADC candidates for ovarian cancer therapy. Our analysis reveals three novel robust antibody/target pairs with strong binding and favourable antibody internalization rates in both wild-type and cisplatin-resistant ovarian cancer cell lines. This approach enhances ADC development and offers a comprehensive method for assessing target/antibody combinations and pre-payload conjugation biological activity. Additionally, the strategy establishes a robust platform for high-throughput screening of potential ovarian cancer ADC targets, an approach that is equally applicable to other cancer types.

11.
Clin Epigenetics ; 15(1): 63, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060086

RESUMO

BACKGROUND: Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS: i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS: Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias Ovarianas , Feminino , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Carcinoma Epitelial do Ovário/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Pontos de Checagem do Ciclo Celular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma/genética , Apoptose , Dano ao DNA
12.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269446

RESUMO

The mechanical homeostasis of tissues can be altered in response to trauma or disease, such as cancer, resulting in altered mechanotransduction pathways that have been shown to impact tumor development, progression, and the efficacy of therapeutic approaches. Specifically, ovarian cancer progression is parallel to an increase in tissue stiffness and fibrosis. With in vivo models proving difficult to study, tying tissue mechanics to altered cellular and molecular properties necessitate advanced, tunable, in vitro 3D models able to mimic normal and tumor mechanic features. First, we characterized normal human ovary and high-grade serous (HGSC) ovarian cancer tissue stiffness to precisely mimic their mechanical features on collagen I-based sponge scaffolds, soft (NS) and stiff (MS), respectively. We utilized three ovarian cancer cell lines (OVCAR-3, Caov-3, and SKOV3) to evaluate changes in viability, morphology, proliferation, and sensitivity to doxorubicin and liposomal doxorubicin treatment in response to a mechanically different microenvironment. High substrate stiffness promoted the proliferation of Caov-3 and SKOV3 cells without changing their morphology, and upregulated mechanosensors YAP/TAZ only in SKOV3 cells. After 7 days in culture, both OVCAR3 and SKOV3 decreased the MS scaffold storage modulus (stiffness), suggesting a link between cell proliferation and the softening of the matrix. Finally, high matrix stiffness resulted in higher OVCAR-3 and SKOV3 cell cytotoxicity in response to doxorubicin. This study demonstrates the promise of biomimetic porous scaffolds for effective inclusion of mechanical parameters in 3D cancer modeling. Furthermore, this work establishes the use of porous scaffolds for studying ovarian cancer cells response to mechanical changes in the microenvironment and as a meaningful platform from which to investigate chemoresistance and drug response.


Assuntos
Apoptose , Neoplasias Ovarianas , Linhagem Celular Tumoral , Doxorrubicina , Matriz Extracelular/metabolismo , Feminino , Humanos , Mecanotransdução Celular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral
13.
Front Oncol ; 12: 1014280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505806

RESUMO

Background: Ovarian cancer (OC) is amongst the most lethal of common cancers in women. Lacking in specific symptoms in the early stages, OC is predominantly diagnosed late when the disease has undergone metastatic spread and chemotherapy is relied on to prolong life. Platinum-based therapies are preferred and although many tumors respond initially, the emergence of platinum-resistance occurs in the majority of cases after which prognosis is very poor. Upregulation of DNA damage pathways is a common feature of platinum resistance in OC with cyclin dependent kinases (CDKs) serving as key regulators of this process and suggesting that CDK inhibitors (CDKis) could be effective tools in the treatment of platinum resistant and refractory OC. Aim: The aim of this study was to evaluate the efficacy of CDKis in platinum resistant OC models and serve as a predictor of potential clinical utility. Methods: The efficacy of CDKi, dinaciclib, was determined in wildtype and platinum resistant cell line pairs representing different OC subtypes. In addition, dinaciclib was evaluated in primary cells isolated from platinum-sensitive and platinum-refractory tumors to increase the clinical relevance of the study. Results and conclusions: Dinaciclib proved highly efficacious in OC cell lines and primary cells, which were over a thousand-fold more sensitive to the CDKi than to cisplatin. Furthermore, cisplatin resistance in these cells did not influence sensitivity to dinaciclib and the two drugs combined additively in both platinum-sensitive and platinum-resistant OC cells suggesting a potential role for pan-CDKis (CDKis targeting multiple CDKs), such as dinaciclib, in the treatment of advanced and platinum-resistant OC.

14.
Front Cell Infect Microbiol ; 11: 752275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660348

RESUMO

Objectives: To investigate whether women with overactive bladder (OAB) symptoms and no evidence of clinical infection by conventional clean-catch midstream urine cultures have alternative indicators of sub-clinical infection. Patients/Subjects Materials & Methods: The study was a prospective, blinded case-control study with 147 participants recruited, including 73 OAB patients and 74 controls. The OAB group comprised female patients of at least 18 years of age who presented with OAB symptoms for more than 3 months. Clean-catch midstream urine samples were examined for pyuria by microscopy; subjected to routine and enhanced microbiological cultures and examined for the presence of 10 different cytokines, chemokines, and prostaglandins by ELISA. Results: The mean age and BMI of participants in both groups were similar. No significant difference in the number of women with pyuria was observed between OAB and control groups (p = 0.651). Routine laboratory cultures were positive in three (4%) of women in the OAB group, whereas the enhanced cultures isolated bacteria in 17 (23.2%) of the OAB patients. In the control group, no positive cultures were observed using routine laboratory cultures, whereas enhanced culture isolated bacteria in 8 (10.8%) patients. No significant differences were observed in the concentrations of PGE2, PGF2α, MCP-1, sCD40L, MIP-1ß, IL12p70/p40, IL12/IL-23p40, IL-5, EGF and GRO-α between the OAB and control groups. Conclusions: Patients with OAB symptoms have significant bacterial growth on enhanced culture of the urine, which is often not detectable through routine culture, suggesting a subclinical infection. Enhanced culture techniques should therefore be used routinely for the effective diagnosis and management of OAB.


Assuntos
Bexiga Urinária Hiperativa , Infecções Urinárias , Estudos de Casos e Controles , Feminino , Humanos , Estudos Prospectivos , Bexiga Urinária Hiperativa/complicações , Infecções Urinárias/complicações
15.
Pharmaceutics ; 13(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684000

RESUMO

Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens.

16.
Clin Transl Med ; 11(10): e551, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709744

RESUMO

BACKGROUND: Ovarian cancer (OC) is typically diagnosed late, associated with high rates of metastasis and the onset of ascites during late stage disease. Understanding the tumor microenvironment and how it impacts the efficacy of current treatments, including immunotherapies, needs effective in vivo models that are fully characterized. In particular, understanding the role of immune cells within the tumor and ascitic fluid could provide important insights into why OC fails to respond to immunotherapies. In this work, we comprehensively described the immune cell infiltrates in tumor nodules and the ascitic fluid within an optimized preclinical model of advanced ovarian cancer. METHODS: Green Fluorescent Protein (GFP)-ID8 OC cells were injected intraperitoneally into C57BL/6 mice and the development of advanced stage OC monitored. Nine weeks after tumor injection, mice were sacrificed and tumor nodules analyzed to identify specific immune infiltrates by immunohistochemistry. Ascites, developed in tumor bearing mice over a 10-week period, was characterized by mass cytometry (CyTOF) to qualitatively and quantitatively assess the distribution of the immune cell subsets, and their relationship to ascites from ovarian cancer patients. RESULTS: Tumor nodules in the peritoneal cavity proved to be enriched in T cells, antigen presenting cells and macrophages, demonstrating an active immune environment and cell-mediated immunity. Assessment of the immune landscape in the ascites showed the predominance of CD8+ , CD4+ , B- , and memory T cells, among others, and the coexistance of different immune cell types within the same tumor microenvironment. CONCLUSIONS: We performed, for the first time, a multiparametric analysis of the ascitic fluid and specifically identify immune cell populations in the peritoneal cavity of mice with advanced OC. Data obtained highlights the impact of CytOF as a diagnostic tool for this malignancy, with the opportunity to concomitantly identify novel targets, and define personalized therapeutic options.


Assuntos
Neoplasias Ovarianas/imunologia , Microambiente Tumoral/imunologia , Animais , Ascite/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
17.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439185

RESUMO

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

18.
Nanoscale ; 13(12): 6129-6141, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33729236

RESUMO

Extracellular vesicles (EVs) are studied extensively as natural biomolecular shuttles and for their diagnostic and therapeutic potential. This exponential rise in interest has highlighted the need for highly robust and reproducible approaches for EV characterisation. Here we optimise quantitative nanomechanical tools and demonstrate the advantages of EV population screening by atomic force microscopy (AFM). Our high-content informatics analytical tools are made available for use by the EV community for widespread, standardised determination of structural stability. Ultracentrifugation (UC) and sonication, the common mechanical techniques used for EV isolation and loading respectively, are used to demonstrate the utility of optimised PeakForce-Quantitative Nano Mechanics (PF-QNM) analysis. EVs produced at an industrial scale exhibited biochemical and biomechanical alterations after exposure to these common techniques. UC resulted in slight increases in physical dimensions, and decreased EV adhesion concurrent with a decrease in CD63 content. Sonicated EVs exhibited significantly reduced levels of CD81, a decrease in size, increased Young's modulus and decreased adhesive force. These biomechanical and biochemical changes highlight the effect of EV sample preparation techniques on critical properties linked to EV cellular uptake and biological function. PF-QNM offers significant additional information about the structural information of EVs following their purification and downstream processing, and the analytical tools will ensure consistency of analysis of AFM data by the EV community, as this technique continues to become more widely implemented.


Assuntos
Vesículas Extracelulares , Módulo de Elasticidade , Fenômenos Mecânicos , Microscopia de Força Atômica , Ultracentrifugação
19.
Cancers (Basel) ; 13(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800911

RESUMO

Endometrial cancer (EC) is the sixth most prevalent female cancer globally and although high rates of success are achieved when diagnosed at an early stage, the 5-year survival rate for cancers diagnosed at Stages II-IV is below 50%. Improving patient outcomes will necessitate the introduction of novel therapies to the clinic. Pan-cyclin-dependent kinase inhibitors (CDKis) have been explored as therapies for a range of cancers due to their ability to simultaneously target multiple key cellular processes, such as cell cycle progression, transcription, and DNA repair. Few studies, however, have reported on their potential for the treatment of EC. Herein, we examined the effects of the pan-CDKi dinaciclib in primary cells isolated directly from tumors and EC cell lines. Dinaciclib was shown to elicit a bimodal action in EC cell lines, disrupting both cell cycle progression and phosphorylation of the RNA polymerase carboxy terminal domain, with a concomitant reduction in Bcl-2 expression. Furthermore, the therapeutic potential of combining dinaciclib and cisplatin was explored, with the drugs demonstrating synergy at specific doses in Type I and Type II EC cell lines. Together, these results highlight the potential of dinaciclib for use as an effective EC therapy.

20.
Mol Cell Biol ; 27(15): 5306-15, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526732

RESUMO

Transcription corepressors are general regulators controlling the expression of genes involved in multiple signaling pathways and developmental programs. Repression is mediated through mechanisms including the stabilization of a repressive chromatin structure over control regions and regulation of Mediator function inhibiting RNA polymerase II activity. Using whole-genome arrays we show that the Arabidopsis thaliana corepressor LEUNIG, a member of the GroTLE transcription corepressor family, regulates the expression of multiple targets in vivo. LEUNIG has a role in the regulation of genes involved in a number of different physiological processes including disease resistance, DNA damage response, and cell signaling. We demonstrate that repression of in vivo LEUNIG targets is achieved through histone deacetylase (HDAC)-dependent and -independent mechanisms. HDAC-dependent mechanisms involve direct interaction with HDA19, a class 1 HDAC, whereas an HDAC-independent repression activity involves interactions with the putative Arabidopsis Mediator components AtMED14/SWP and AtCDK8/HEN3. We suggest that changes in chromatin structure coupled with regulation of Mediator function are likely to be utilized by LEUNIG in the repression of gene transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Quinase 8 Dependente de Ciclina , Flores/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA