Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochemistry ; 57(12): 1880-1892, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485857

RESUMO

There are currently no clinically available inhibitors of metallo-ß-lactamases (MBLs), enzymes that hydrolyze ß-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 µM; Ki values of 0.03-1.5 µM). Minimum inhibitory concentration assays demonstrated potentiation of ß-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química
2.
Biochim Biophys Acta ; 1850(11): 2228-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238337

RESUMO

BACKGROUND: Metallo-ß-lactamases (MBLs) play an important role in the emergence of microbial resistance to ß-lactam antibiotics, and are hence considered targets for the design of novel therapeutics. We here report on the inhibitory effect of peptides containing multiple arginine residues on VIM-2, a clinically important MBL from Pseudomonas aeruginosa. METHODS: Enzyme kinetic assays in combination with fluorescence spectroscopy and stopped-flow UV-Vis spectrophotometry were utilized to explore the structure-activity relationship of peptides as inhibitors of VIM-2. RESULTS: Our studies show that the inhibitory potency of the investigated peptides was mainly dependent on the number of arginine residues in the center of the peptide sequence, and on the composition of the N-terminus. The most potent inhibitors were found to curtail enzyme function in the mid-to-low nanomolar range. Salts generally reduced peptide-mediated inhibition. Analysis of the mode of inhibition suggests the peptides to act as mixed-type inhibitors with a higher affinity for the enzyme-substrate complex. Stopped-flow UV-Vis and fluorescence studies revealed the peptides to induce rapid protein aggregation, a phenomenon strongly correlated to the peptides' inhibitory potency. Inhibition of IMP-1 (another subclass B1 MBL) by the peptides was found to be much weaker than that observed with VIM-2, a finding which might be related to subtle molecular differences in the protein surfaces. CONCLUSION: The reported data indicate that arginine-containing peptides can serve as potent, aggregation-inducing inhibitors of VIM-2, and potentially of other MBLs. GENERAL SIGNIFICANCE: Arginine-containing peptides can be considered as a novel type of potent MBL inhibitors.


Assuntos
Peptídeos/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases , Arginina , Agregados Proteicos , Relação Estrutura-Atividade , beta-Lactamases/química
3.
J Cell Physiol ; 230(3): 587-94, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160985

RESUMO

Here we report that both PLCß1a and PLCß1b are relevant regulators of erythropoiesis in that kinamycin F, a potent inducer of γ-globin production in K562 cells, caused a selectively reduction of both PLCß1 isozymes even though the results point out that the effect of the drug is mainly directed toward the expression of the PLCß1a isoform. We have identified a different role for the two isozymes as regulators of K562 differentiation process induced by kinamycin F. The overexpression of PLCß1b induced an increase in γ-globin expression even in the absence of kinamycin F. Moreover during K562 differentiation, cyclin D3 level is regulated by PLCß1 signaling pathway. Namely the amplification of the expression of the PLCß1a, but not of PLCß1b, is able to maintain high levels of expression of cyclin D3 even after treatment with kinamycin F. This could be due to their different distribution in the cell compartments since the amount of PLCß1b is mainly present in the nucleus in respect to PLCß1a. Our data indicate that the amplification of PLCß1a expression, following treatment with kinamycin F, confers a real advantage to K562 cells viability and protects cells themselves from apoptosis.


Assuntos
Ciclina D3/genética , Fosfolipase C beta/biossíntese , Isoformas de Proteínas/biossíntese , gama-Globinas/biossíntese , Apoptose , Diferenciação Celular/genética , Linhagem Celular , Ciclina D3/biossíntese , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Isoformas de Proteínas/genética , Quinonas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
4.
Anal Biochem ; 486: 75-7, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26142222

RESUMO

We report on the synthesis of three nitrocefin analogues and their evaluation as substrates for the detection of ß-lactamase activity. These compounds are hydrolyzed by all four Ambler classes of ß-lactamases. Kinetic parameters were determined with eight different ß-lactamases, including VIM-2, NDM-1, KPC-2, and SPM-1. The compounds do not inhibit the growth of clinically important antibiotic-resistant gram-negative bacteria in vitro. These chromogenic compounds have a distinct absorbance spectrum and turn purple when hydrolyzed by ß-lactamases. One of these compounds, UW154, is easier to synthesize from commercial starting materials than nitrocefin and should be significantly less expensive to produce.


Assuntos
Cefalosporinas/síntese química , Cefalosporinas/metabolismo , beta-Lactamases/metabolismo , Biocatálise , Cefalosporinas/química , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos , Hidrólise , Cinética
5.
J Am Chem Soc ; 132(8): 2558-60, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20141132

RESUMO

The most important mode of bacterial resistance to beta-lactam antibiotics is the expression of beta-lactamases. New cyclobutanone analogues of penams and penems have been prepared and evaluated for inhibition of class A, B, C, and D beta-lactamases. Inhibitors which favor conformations in which the C4 carboxylate is equatorial were found to be more potent than those in which the carboxylate is axial, and molecular modeling studies with enzyme-inhibitor complexes indicate that an equatorial orientation of the carboxylate is required for binding to beta-lactamases. An X-ray structure of OXA-10 complexed with a cyclobutanone confirms that a serine hemiketal is formed in the active site and that the inhibitor adopts the exo envelope. An unsaturated penem analogue was also found to enhance the potency of meropenem against carbapenem-resistant MBL-producing strains of Chryseobacterium meningosepticum and Stenotrophomonas maltophilia. These cyclobutanones represent the first type of reversible inhibitors to show moderate (low micromolar) inhibition of both serine- and metallo-beta-lactamases and should be considered for further development into practical inhibitors.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/enzimologia , Inibidores de beta-Lactamases , beta-Lactamas/química , beta-Lactamas/farmacologia , Butanonas/química , Butanonas/farmacologia , Cristalografia por Raios X , Modelos Moleculares , beta-Lactamases/química , beta-Lactamases/metabolismo
6.
Methods Mol Med ; 142: 239-60, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18437319

RESUMO

The ability, either innate or acquired, to produce beta-lactamases, enzymes capable of hydrolyzing the endocyclic peptide bond in beta-lactam antibiotics, would appear to be a primary contributor to the ever-increasing incidences of resistance to this class of antibiotics. To date, four distinct classes, A, B, C, and D, of beta-lactamases have been identified. Of these, enzymes in classes A, C, and D utilize a serine residue as a nucleophile in their catalytic mechanism while class B members are Zn2+-dependent for their function. Efforts have been and still continue to be made toward the development of potent inhibitors of these enzymes as a means to ensure the efficacy of beta-lactam antibiotics in clinical medicine. This chapter concerns procedures for the evaluation of the catalytic activity of beta-lactamases as a means to screen compounds for their inhibitory potency.


Assuntos
Inibidores Enzimáticos/análise , Escherichia coli/enzimologia , Inibidores de beta-Lactamases , beta-Lactamases/análise , Proteínas de Bactérias/análise , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/isolamento & purificação , Quelantes/análise , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Humanos , Cinética , Espectrofotometria , beta-Lactamases/isolamento & purificação , beta-Lactamas/farmacologia
7.
Free Radic Biol Med ; 43(8): 1132-44, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17854709

RESUMO

The bacterial metabolite kinamycin F, which is being investigated as a potent antitumor agent, contains an unusual and potentially reactive diazo group, a paraquinone, and a phenol functional group. Kinamycin F reacted with glutathione (GSH) in a complex series of reactions which suggested that kinamycin F may have its cytotoxicity modulated by GSH. Consistent with this idea, 2-oxo-4-thiazolidinecarboxylic acid treatment to increase cellular GSH levels and buthionine sulfoximine treatment to decrease GSH levels resulted in decreased and increased kinamycin F cytotoxicity, respectively, in K562 leukemia cells. Kinamycin F weakly bound to DNA and induced DNA damage in K562 cells that was independent of GSH levels. The GSH-promoted DNA nicking induced by kinamycin F in vitro was attenuated by deferoxamine, dimethyl sulfoxide, and catalase, which indicated that DNA damage initiated by this agent occurred in an iron-, hydrogen-peroxide-, and hydroxyl-radical-dependent manner. Electron paramagnetic resonance spectroscopy experiments showed that the GSH/kinamycin F system produced a semiquinone free radical and that the hydrogen peroxide/peroxidase/kinamycin F system generated a phenoxyl free radical. In conclusion, the results indicated that kinamycin F cytotoxicity may be due to reductive and/or peroxidative activation to produce DNA-and protein-damaging species.


Assuntos
Amitrol (Herbicida)/farmacologia , Antígenos de Neoplasias , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , DNA Topoisomerases Tipo II , Proteínas de Ligação a DNA/antagonistas & inibidores , Ditiotreitol/química , Sinergismo Farmacológico , Espectroscopia de Ressonância de Spin Eletrônica , Fluoresceínas/metabolismo , Glutationa/química , Glutationa/farmacologia , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Células K562 , Quinonas/química , Quinonas/metabolismo , Quinonas/toxicidade , Inibidores da Topoisomerase II
8.
Anticancer Drugs ; 17(7): 825-37, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16926632

RESUMO

The cell growth and cell cycle inhibitory properties of the bacterial metabolites kinamycin A and kinamycin C were investigated in an attempt to determine their mechanism of action and to develop these or their analogs as anticancer agents. Both kinamycin A and kinamycin C have a highly unusual and potentially reactive diazo group. Even with short incubations, both the kinamycins were shown to have very potent cell growth inhibitory effects on either Chinese hamster ovary or K562 cells. Kinamycin C induced a rapid apoptotic response in K562 cells. The cell cycle analysis results in synchronized Chinese hamster ovary cells treated with kinamycin A revealed that they only displayed a G1/S phase block upon entry to the second cycle. Both kinamycins inhibited the catalytic decatenation activity of DNA topoisomerase IIalpha, but neither kinamycin acted as a topoisomerase II poison. Their inhibition of catalytic activity was not correlated with cell growth inhibitory effects. Pretreatment of the kinamycins with dithiothreitol protected the topoisomerase IIalpha activity, which suggested that they may be targeting critical protein sulfhydryl groups, either through reaction with the quinone or with an activated electrophilic diazo group. Neither kinamycin A nor kinamycin C intercalated into DNA, nor were they able to cross-link DNA. Although the cellular target(s) of the kinamycins has yet to be identified, the cluster map analysis, and the cell cycle and proapoptotic effects suggest that kinamycin C has a target different than other established anticancer compounds.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Compostos Azo/farmacologia , Ciclo Celular/efeitos dos fármacos , Naftoquinonas/farmacologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antibióticos Antineoplásicos/química , Antígenos de Neoplasias/metabolismo , Compostos Azo/química , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Cricetinae , Reagentes de Ligações Cruzadas , DNA Girase/metabolismo , DNA Topoisomerases Tipo II/metabolismo , DNA de Neoplasias/genética , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Humanos , Células K562 , NAD/metabolismo , Naftoquinonas/química , Plasmídeos/genética , Quinonas/química , Quinonas/farmacologia , Inibidores da Topoisomerase II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA