RESUMO
Besides the well-recognized influence of maternal health on fetal in utero development, recent epidemiological studies appoint paternal preconception metabolic health as a significant factor in shaping fetal metabolic programming and subsequently offspring metabolic health; however, mechanisms behind these adaptations remain confined to animal models. To elucidate the effects of paternal obesity (P-OB) on infant metabolism in humans, we examined mesenchymal stem cells (MSCs), which give rise to infant tissue, remain involved in mature tissue maintenance, and resemble the phenotype of the offspring donor. Here, we assessed mitochondrial functional capacity, content, and insulin action in MSC from infants of fathers with overweight [body mass index (BMI: 25-30 kg/m2); paternal overweight (P-OW)] or obesity (BMI ≥ 30 kg/m2; P-OB) while controlling for maternal intrauterine environment. Compared with P-OW, infant MSCs in the P-OB group had lower intact cell respiration, OXPHOS, and electron transport system capacity, independent of any changes in mitochondrial content. Furthermore, glucose handling, insulin action, lipid content, and oxidation were similar between groups. Importantly, infants in the P-OB group had a greater weight-to-length ratio, which could be in part due to changes in MSC metabolic functioning, which precedes and, therefore, influences infant growth trajectories. These data suggest that P-OB negatively influences infant MSC mitochondria. ClinicalTrials.gov Identifier: NCT03838146.NEW & NOTEWORTHY Paternal obesity decreases infant mesenchymal stem cell (MSC) basal and maximal respiration. Lower OXPHOS and electron transport system capacity could be explained by lower complex I and IV respiratory capacity but not changes in OXPHOS expression in infant MSC from fathers with obesity. Paternal obesity and altered MSC mitochondrial functional capacity are associated with a greater infant weight-to-length ratio at birth.
Assuntos
Pai , Células-Tronco Mesenquimais , Mitocôndrias , Obesidade , Adulto , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fosforilação OxidativaRESUMO
Satellite cells reside beneath the basal lamina of skeletal muscle fibers and include cells that act as precursors for muscle growth and repair. Although they share a common anatomical localization and typically are considered a homogeneous population, satellite cells actually exhibit substantial heterogeneity. We used cell-surface marker expression to purify from the satellite cell pool a distinct population of skeletal muscle precursors (SMPs) that function as muscle stem cells. When engrafted into muscle of dystrophin-deficient mdx mice, purified SMPs contributed to up to 94% of myofibers, restoring dystrophin expression and significantly improving muscle histology and contractile function. Transplanted SMPs also entered the satellite cell compartment, renewing the endogenous stem cell pool and participating in subsequent rounds of injury repair. Together, these studies indicate the presence in adult skeletal muscle of prospectively isolatable muscle-forming stem cells and directly demonstrate the efficacy of myogenic stem cell transplant for treating muscle degenerative disease.
Assuntos
Células-Tronco Adultas/citologia , Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/citologia , Células-Tronco Adultas/química , Animais , Separação Celular , Distrofina/genética , Distrofina/metabolismo , Humanos , Proteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/fisiologia , Distrofia Muscular Animal/terapia , Células Satélites de Músculo Esquelético/química , Transplante de Células-TroncoRESUMO
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208 , a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/- ) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/- mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.
Assuntos
Vasos Coronários/metabolismo , Glucose/metabolismo , Isquemia/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Animais , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacosRESUMO
A single exercise session can increase insulin-stimulated glucose uptake (GU) by skeletal muscle, concomitant with greater Akt substrate of 160 kDa (AS160) phosphorylation on Akt-phosphosites (Thr642 and Ser588) that regulate insulin-stimulated GU. Recent research using mouse skeletal muscle suggested that ex vivo 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or electrically stimulated contractile activity-inducing increased γ3-AMPK activity and AS160 phosphorylation on a consensus AMPK-motif (Ser704) resulted in greater AS160 Thr642 phosphorylation and GU by insulin-stimulated muscle. Our primary goal was to determine whether in vivo exercise that increases insulin-stimulated GU in rat skeletal muscle would also increase γ3-AMPK activity and AS160 site-selective phosphorylation (Ser588, Thr642, and Ser704) immediately postexercise (IPEX) and/or 3 h postexercise (3hPEX). Epitrochlearis muscles isolated from sedentary and exercised (2-h swim exercise; studied IPEX and 3hPEX) rats were incubated with 2-deoxyglucose to determine GU (without insulin at IPEX; without or with insulin at 3hPEX). Muscles were also assessed for γ1-AMPK activity, γ3-AMPK activity, phosphorylated AMPK (pAMPK), and phosphorylated AS160 (pAS160). IPEX versus sedentary had greater γ3-AMPK activity, pAS160 (Ser588, Thr642, Ser704), and GU with unaltered γ1-AMPK activity. 3hPEX versus sedentary had greater γ3-AMPK activity, pAS160 Ser704, and GU with or without insulin; greater pAS160 Thr642 only with insulin; and unaltered γ1-AMPK activity. These results using an in vivo exercise protocol that increased insulin-stimulated GU in rat skeletal muscle are consistent with the hypothesis that in vivo exercise-induced enhancement of γ3-AMPK activation and AS160 Ser704 IPEX and 3hPEX are important for greater pAS160 Thr642 and enhanced insulin-stimulated GU by skeletal muscle.
Assuntos
Adenilato Quinase/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Desoxiglucose/farmacologia , Músculo Esquelético/efeitos dos fármacos , Fosforilação , RatosRESUMO
Skeletal muscle atrophy is associated with a disruption in protein turnover involving increased protein degradation and suppressed protein synthesis. Although it has been well studied that the IGF-1/PI3K/Akt pathway plays an essential role in the regulation of the protein turnover, molecule(s) that triggers the change in protein turnover still remains to be elucidated. TRB3 has been shown to inhibit Akt through direct binding. In this study, we hypothesized that TRB3 in mouse skeletal muscle negatively regulates protein turnover via the disruption of Akt and its downstream molecules. Muscle-specific TRB3 transgenic (TRB3TG) mice had decreased muscle mass and fiber size, resulting in impaired muscle function. We also found that protein synthesis rate and signaling molecules, mTOR and S6K1, were significantly reduced in TRB3TG mice, whereas the protein breakdown pathway was significantly activated. In contrast, TRB3 knockout mice showed increased muscle mass and had an increase in protein synthesis rate, but decreases in FoxOs, atrogin-1, and MuRF-1. These findings indicate that TRB3 regulates protein synthesis and breakdown via the Akt/mTOR/FoxO pathways.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Músculo Esquelético/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Feminino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Musculares/genética , Músculo Esquelético/fisiopatologia , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Brown adipose tissue (BAT) dissipates chemical energy as heat and can counteract obesity. MicroRNAs are emerging as key regulators in development and disease. Combining microRNA and mRNA microarray profiling followed by bioinformatic analyses, we identified miR-455 as a new regulator of brown adipogenesis. miR-455 exhibits a BAT-specific expression pattern and is induced by cold and the browning inducer BMP7. In vitro gain- and loss-of-function studies show that miR-455 regulates brown adipocyte differentiation and thermogenesis. Adipose-specific miR-455 transgenic mice display marked browning of subcutaneous white fat upon cold exposure. miR-455 activates AMPKα1 by targeting HIF1an, and AMPK promotes the brown adipogenic program and mitochondrial biogenesis. Concomitantly, miR-455 also targets the adipogenic suppressors Runx1t1 and Necdin, initiating adipogenic differentiation. Taken together, the data reveal a novel microRNA-regulated signaling network that controls brown adipogenesis and may be a potential therapeutic target for human metabolic disorders.
Assuntos
Adipócitos Marrons/metabolismo , Adipogenia/genética , MicroRNAs/genética , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco , Animais , Diferenciação Celular/genética , Células Cultivadas , Temperatura Baixa , Humanos , Camundongos , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Repressoras/metabolismo , Termogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
AIMS: To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. PARTICIPANTS AND METHODS: Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m2 [95% CI 24.1-26.3], peak oxygen uptake (VO2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. RESULTS: Training improved VO2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. CONCLUSIONS: Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation.
Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Exercício Físico/fisiologia , Glucose/farmacocinética , Insulina/farmacologia , Adulto , Ácidos Graxos não Esterificados/metabolismo , Saúde , Humanos , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologiaRESUMO
AIMS/HYPOTHESIS: Adipose tissue dysfunction is a prime risk factor for the development of metabolic disease. Bone morphogenetic proteins (BMPs) have previously been implicated in adipocyte formation. Here, we investigate the role of BMP signalling in adipose tissue health and systemic glucose homeostasis. METHODS: We employed the Cre/loxP system to generate mouse models with conditional ablation of BMP receptor 1A in differentiating and mature adipocytes, as well as tissue-resident myeloid cells. Metabolic variables were assessed by glucose and insulin tolerance testing, insulin-stimulated glucose uptake and gene expression analysis. RESULTS: Conditional deletion of Bmpr1a using the aP2 (also known as Fabp4)-Cre strain resulted in a complex phenotype. Knockout mice were clearly resistant to age-related impairment of insulin sensitivity during normal and high-fat-diet feeding and showed significantly improved insulin-stimulated glucose uptake in brown adipose tissue and skeletal muscle. Moreover, knockouts displayed significant reduction of variables of adipose tissue inflammation. Deletion of Bmpr1a in myeloid cells had no impact on insulin sensitivity, while ablation of Bmpr1a in mature adipocytes partially recapitulated the initial phenotype from aP2-Cre driven deletion. Co-cultivation of macrophages with pre-adipocytes lacking Bmpr1a markedly reduced expression of proinflammatory genes. CONCLUSIONS/INTERPRETATION: Our findings show that altered BMP signalling in adipose tissue affects the tissue's metabolic properties and systemic insulin resistance by altering the pattern of immune cell infiltration. The phenotype is due to ablation of Bmpr1a specifically in pre-adipocytes and maturing adipocytes rather than an immune cell-autonomous effect. Mechanistically, we provide evidence for a BMP-mediated direct crosstalk between pre-adipocytes and macrophages.
Assuntos
Tecido Adiposo/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Resistência à Insulina/fisiologia , Adipócitos/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Glucose/metabolismo , Insulina/sangue , Resistência à Insulina/genética , Interleucina-6/sangue , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/sangueRESUMO
Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function.
Assuntos
Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipogenia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Insulina/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologiaRESUMO
Older individuals have a reduced capacity to induce muscle hypertrophy with resistance exercise (RE), which may contribute to the age-induced loss of muscle mass and function, sarcopenia. We tested the novel hypothesis that dysregulation of microRNAs (miRNAs) may contribute to reduced muscle plasticity with aging. Skeletal muscle expression profiling of protein-coding genes and miRNA was performed in younger (YNG) and older (OLD) men after an acute bout of RE. 21 miRNAs were altered by RE in YNG men, while no RE-induced changes in miRNA expression were observed in OLD men. This striking absence in miRNA regulation in OLD men was associated with blunted transcription of mRNAs, with only 42 genes altered in OLD men vs. 175 in YNG men following RE, demonstrating a reduced adaptability of aging muscle to exercise. Integrated bioinformatics analysis identified miR-126 as an important regulator of the transcriptional response to exercise and reduced lean mass in OLD men. Manipulation of miR-126 levels in myocytes, in vitro, revealed its direct effects on the expression of regulators of skeletal muscle growth and activation of insulin growth factor 1 (IGF-1) signaling. This work identifies a mechanistic role of miRNA in the adaptation of muscle to anabolic stimulation and reveals a significant impairment in exercise-induced miRNA/mRNA regulation with aging.
Assuntos
Envelhecimento/fisiologia , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/metabolismo , Fadiga Muscular , Músculo Esquelético/metabolismo , Adaptação Fisiológica , Adulto , Idoso , Perfilação da Expressão Gênica , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , MicroRNAs/genética , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Adulto JovemRESUMO
We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/ß2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/ß2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.
Assuntos
Exercício Físico , Proteínas Ativadoras de GTPase/metabolismo , Insulina/sangue , Músculo Esquelético/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação , Esforço FísicoRESUMO
Increasing evidence suggests that TRB3, a mammalian homolog of Drosophila tribbles, plays an important role in cell growth, differentiation, and metabolism. In the liver, TRB3 binds and inhibits Akt activity, whereas in adipocytes, TRB3 upregulates fatty acid oxidation. In cultured muscle cells, TRB3 has been identified as a potential regulator of insulin signaling. However, little is known about the function and regulation of TRB3 in skeletal muscle in vivo. In the current study, we found that 4 wk of voluntary wheel running (6.6 ± 0.4 km/day) increased TRB3 mRNA by 1.6-fold and protein by 2.5-fold in the triceps muscle. Consistent with this finding, muscle-specific transgenic mice that overexpress TRB3 (TG) had a pronounced increase in exercise capacity compared with wild-type (WT) littermates (TG: 1,535 ± 283; WT: 644 ± 67 joules). The increase in exercise capacity in TRB3 TG mice was not associated with changes in glucose uptake or glycogen levels; however, these mice displayed a dramatic shift toward a more oxidative/fatigue-resistant (type I/IIA) muscle fiber type, including threefold more type I fibers in soleus muscles. Skeletal muscle from TRB3 TG mice had significantly decreased PPARα expression, twofold higher levels of miR208b and miR499, and corresponding increases in the myosin heavy chain isoforms Myh7 and Myb7b, which encode these microRNAs. These findings suggest that TRB3 regulates muscle fiber type via a peroxisome proliferator-activated receptor-α (PPAR-α)-regulated miR499/miR208b pathway, revealing a novel function for TRB3 in the regulation of skeletal muscle fiber type and exercise capacity.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Tolerância ao Exercício/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Regulação para Cima/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Modelos Animais , Cadeias Pesadas de Miosina/metabolismo , PPAR alfa/metabolismoRESUMO
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico/fisiologia , Glucose/metabolismo , Músculo Esquelético/metabolismo , Adaptação Fisiológica/fisiologia , Diabetes Mellitus Tipo 2/diagnóstico , HumanosRESUMO
Exercise training and cold exposure both improve systemic metabolism, but the mechanisms are not well established. Here, we tested the hypothesis that inguinal white adipose tissue (iWAT) adaptations are critical for these beneficial effects and determined the impact of exercise-trained and cold-exposed iWAT on systemic glucose metabolism and the iWAT proteome and secretome. Transplanting trained iWAT into sedentary mice improves glucose tolerance, while cold-exposed iWAT transplantation shows no such benefit. Compared to training, cold leads to more pronounced alterations in the iWAT proteome and secretome, downregulating >2,000 proteins but also boosting the thermogenic capacity of iWAT. In contrast, only training increases extracellular space and vesicle transport proteins, and only training upregulates proteins that correlate with favorable fasting glucose, suggesting fundamental changes in trained iWAT that mediate tissue-to-tissue communication. This study defines the unique exercise training- and cold exposure-induced iWAT proteomes, revealing distinct mechanisms for the beneficial effects of these interventions on metabolic health.
Assuntos
Adaptação Fisiológica , Tecido Adiposo Branco , Temperatura Baixa , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Animais , Tecido Adiposo Branco/metabolismo , Camundongos , Masculino , Proteoma/metabolismo , Termogênese/fisiologia , Glucose/metabolismoRESUMO
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Assuntos
Fatores de Crescimento de Fibroblastos , Placenta , Prolactina , Transdução de Sinais , Superóxido Dismutase , Animais , Feminino , Gravidez , Placenta/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Prolactina/metabolismo , Comportamento Materno , Camundongos Knockout , Hipófise/metabolismo , Deleção de Genes , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Camundongos Endogâmicos C57BLRESUMO
Beta (ß)-cell senescence contributes to type 2 diabetes mellitus (T2DM). While exercise is vital for T2DM management and significantly affects cellular ageing markers, its effect on ß-cell senescence remains unexplored. Here, we show that short-term endurance exercise training (treadmill running, 1 h per day for 10 days) in two male and female mouse models of insulin resistance decreases ß-cell senescence. In vivo and in vitro experiments revealed that this effect is mediated, at least in part, by training-induced increases in serum glucagon, leading to activation of 5'-AMP-activated protein kinase (AMPK) signalling in ß-cells. AMPK activation resulted in the nuclear translocation of NRF2 and decreased expression of senescence markers and effectors. Remarkably, human islets from male and female donors with T2DM treated with serum collected after a 10-week endurance exercise training programme showed a significant decrease in the levels of senescence markers. These findings indicate that exercise training decreases senescence in pancreatic islets, offering promising therapeutic implications for T2DM.
Assuntos
Proteínas Quinases Ativadas por AMP , Senescência Celular , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Condicionamento Físico Animal , Humanos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Feminino , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Resistência à Insulina , Fator 2 Relacionado a NF-E2/metabolismo , Glucagon/sangue , Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Ativação Enzimática , Transdução de SinaisRESUMO
While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, â¼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.
Assuntos
Adaptação Fisiológica , Envelhecimento , Condicionamento Físico Animal , Ratos Endogâmicos F344 , Animais , Masculino , Feminino , Condicionamento Físico Animal/fisiologia , Adaptação Fisiológica/fisiologia , Ratos , Envelhecimento/fisiologia , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Treino AeróbicoRESUMO
Exercise mediates tissue metabolic function through direct and indirect adaptations to acylcarnitine (AC) metabolism, but the exact mechanisms are unclear. We found that circulating medium-chain acylcarnitines (AC) (C12-C16) are lower in active/endurance trained human subjects compared to sedentary controls, and this is correlated with elevated cardiorespiratory fitness and reduced adiposity. In mice, exercise reduced serum AC and increased liver AC, and this was accompanied by a marked increase in expression of genes involved in hepatic AC metabolism and mitochondrial ß-oxidation. Primary hepatocytes from high-fat fed, exercise trained mice had increased basal respiration compared to hepatocytes from high-fat fed sedentary mice, which may be attributed to increased Ca2+ cycling and lipid uptake into mitochondria. The addition of specific medium- and long-chain AC to sedentary hepatocytes increased mitochondrial respiration, mirroring the exercise phenotype. These data indicate that AC redistribution is an exercise-induced mechanism to improve hepatic function and metabolism.
RESUMO
Subcutaneous white adipose tissue (scWAT) is a dynamic storage and secretory organ that regulates systemic homeostasis, yet the impact of endurance exercise training (ExT) and sex on its molecular landscape is not fully established. Utilizing an integrative multi-omics approach, and leveraging data generated by the Molecular Transducers of Physical Activity Consortium (MoTrPAC), we show profound sexual dimorphism in the scWAT of sedentary rats and in the dynamic response of this tissue to ExT. Specifically, the scWAT of sedentary females displays -omic signatures related to insulin signaling and adipogenesis, whereas the scWAT of sedentary males is enriched in terms related to aerobic metabolism. These sex-specific -omic signatures are preserved or amplified with ExT. Integration of multi-omic analyses with phenotypic measures identifies molecular hubs predicted to drive sexually distinct responses to training. Overall, this study underscores the powerful impact of sex on adipose tissue biology and provides a rich resource to investigate the scWAT response to ExT.
Assuntos
Tecido Adiposo Branco , Condicionamento Físico Animal , Caracteres Sexuais , Gordura Subcutânea , Animais , Masculino , Feminino , Ratos , Tecido Adiposo Branco/metabolismo , Gordura Subcutânea/metabolismo , Adipogenia , Ratos Sprague-Dawley , MultiômicaRESUMO
Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK α2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK α2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK α2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK α2 KD mice. In conclusion, functional α2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related.