Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 31(8): 3251-3266, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28416581

RESUMO

Transient receptor potential (TRP) channels are polymodal cell sensors responding to diverse stimuli and widely implicated in the developmental programs of numerous tissues. The evidence for an involvement of TRP family members in adipogenesis, however, is scant. We present the first comprehensive expression profile of all known 27 human TRP genes in mesenchymal progenitors cells during white or brown adipogenesis. Using positive trilineage differentiation as an exclusion criterion, TRP polycystic (P)3, and TPR melastatin (M)8 were found to be uniquely adipospecific. Knockdown of TRPP3 repressed the expression of the brown fat signature genes uncoupling protein (UCP)-1 and peroxisome proliferator-activated receptor γ coactivator (PGC)-1α as well as attenuated forskolin-stimulated uncoupled respiration. However, indices of generalized adipogenesis, such as lipid droplet morphology and fatty acid binding protein (FAPB)-4 expression, were not affected, indicating a principal mitochondrial role of TRPP3. Conversely, activating TRPM8 with menthol up-regulated UCP-1 expression and augmented uncoupled respiration predominantly in white adipocytes (browning), whereas streptomycin antagonized TRPM8-mediated calcium entry, downregulated UCP-1 expression, and mitigated uncoupled respiration; menthol was less capable of augmenting uncoupled respiration (thermogenesis) in brown adipocytes. TRPP3 and TRPM8 hence appear to be involved in the priming of mitochondria to perform uncoupled respiration downstream of adenylate cyclase. Our results also underscore the developmental caveats of using antibiotics in adipogenic studies.-Goralczyk, A., van Vijven, M., Koch, M., Badowski, C., Yassin, M. S., Toh, S.-A., Shabbir, A., Franco-Obregón, A., Raghunath, M. TRP channels in brown and white adipogenesis from human progenitors: new therapeutic targets and the caveats associated with the common antibiotic, streptomycin.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Antibacterianos/efeitos adversos , Estreptomicina/efeitos adversos , Canais de Potencial de Receptor Transitório/metabolismo , Adulto , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Isoformas de Proteínas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Canais de Potencial de Receptor Transitório/genética , Adulto Jovem
2.
Mol Ther ; 23(3): 510-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582709

RESUMO

Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-ß and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Isquemia/terapia , Leucócitos Mononucleares/citologia , Neovascularização Fisiológica , Pericitos/transplante , Animais , Antígenos/genética , Antígenos/metabolismo , Biomarcadores/metabolismo , Adesão Celular , Contagem de Células , Diferenciação Celular , Proliferação de Células , Expressão Gênica , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/patologia , Leucócitos Mononucleares/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Nus , Pericitos/citologia , Pericitos/fisiologia , Cultura Primária de Células , Proteoglicanas/genética , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
3.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671735

RESUMO

Traditional eye irritation assessments, which rely on animal models or ex vivo tissues, face limitations due to ethical concerns, costs, and low throughput. Although numerous in vitro tests have been developed, none have successfully reconciled the need for high experimental throughput with the accurate prediction of irritation potential, attributable to the complexity of irritation mechanisms. Simple cell models, while suitable for high-throughput screening, offer limited mechanistic insights, contrasting with more physiologically relevant but less scalable complex organotypic corneal tissue constructs. This study presents a novel strategy to enhance the predictive accuracy of screening-compatible simple cell models in eye irritation testing. Our method combines the results of two in vitro assays-cell apoptosis and nociceptor (TRPV1) activation-using micropatterned chips to partition human corneal epithelial cells into numerous discrete small populations. Following exposure to test compounds, we measure apoptosis and nociceptor activation responses. The large datasets collected from the cell micropatterns facilitate binarization and statistical fitting to calculate a mathematical probability, which assesses the compound's potential to cause eye irritation. This method potentially enables the amalgamation of multiple mechanistic readouts into a singular index, providing a more accurate and reliable prediction of eye irritation potential in a format amenable to high-throughput screening.

4.
Biol Chem ; 394(1): 113-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23091270

RESUMO

Silver nanoparticles (AgNPs) have many biological applications in biomedicine, biotechnology and other life sciences. Depending on the size, shape and the type of carrier, AgNPs demonstrate different physical and chemical properties. AgNPs have strong antimicrobial, antiviral and antifungal activity, thus they are used extensively in a range of medical settings, particularly in wound dressings but also in cosmetics. This study was undertaken to examine the potential toxic effects of 15 nm polyvinylpyrrolidone-coated AgNPs on primary normal human epidermal keratinocytes (NHEK). Cells were treated with different concentrations of AgNPs and then cell viability, metabolic activity and other biological and biochemical aspects of keratinocytes functioning were studied. We observed that AgNPs decrease keratinocyte viability, metabolism and also proliferatory and migratory potential of these cells. Moreover, longer exposure resulted in activation of caspase 3/7 and DNA damage. Our studies show for the first time, that AgNPs may present possible danger for primary keratinocytes, concerning activation of genotoxic and cytotoxic processes depending on the concentration.


Assuntos
Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Queratinócitos/metabolismo , Prata/química , Relação Estrutura-Atividade
6.
Sci Rep ; 7(1): 1383, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469146

RESUMO

The identification of brown adipose deposits in adults has led to significant interest in targeting this metabolically active tissue for treatment of obesity and diabetes. Improved methods for the direct measurement of heat production as the signature function of brown adipocytes (BAs), particularly at the single cell level, would be of substantial benefit to these ongoing efforts. Here, we report the first application of a small molecule-type thermosensitive fluorescent dye, ERthermAC, to monitor thermogenesis in BAs derived from murine brown fat precursors and in human brown fat cells differentiated from human neck brown preadipocytes. ERthermAC accumulated in the endoplasmic reticulum of BAs and displayed a marked change in fluorescence intensity in response to adrenergic stimulation of cells, which corresponded to temperature change. ERthermAC fluorescence intensity profiles were congruent with mitochondrial depolarisation events visualised by the JC-1 probe. Moreover, the averaged fluorescence intensity changes across a population of cells correlated well with dynamic changes such as thermal power, oxygen consumption, and extracellular acidification rates. These findings suggest ERthermAC as a promising new tool for studying thermogenic function in brown adipocytes of both murine and human origins.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Termogênese , Termografia/métodos , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes , Humanos , Camundongos , Análise de Célula Única , Termografia/instrumentação
7.
Sci Rep ; 6: 21173, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883894

RESUMO

Key to realizing the diagnostic and therapeutic potential of human brown/brite adipocytes is the identification of a renewable, easily accessible and safe tissue source of progenitor cells, and an efficacious in vitro differentiation protocol. We show that macromolecular crowding (MMC) facilitates brown adipocyte differentiation in adult human bone marrow mesenchymal stem cells (bmMSCs), as evidenced by substantially upregulating uncoupling protein 1 (UCP1) and uncoupled respiration. Moreover, MMC also induced 'browning' in bmMSC-derived white adipocytes. Mechanistically, MMC creates a 3D extracellular matrix architecture enshrouding maturing adipocytes in a collagen IV cocoon that is engaged by paxillin-positive focal adhesions also at the apical side of cells, without contact to the stiff support structure. This leads to an enhanced matrix-cell signaling, reflected by increased phosphorylation of ATF2, a key transcription factor in UCP1 regulation. Thus, tuning the dimensionality of the microenvironment in vitro can unlock a strong brown potential dormant in bone marrow.


Assuntos
Adipogenia , Diferenciação Celular , Microambiente Celular , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Fator 2 Ativador da Transcrição/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Expressão Gênica , Humanos , Modelos Biológicos , Fenótipo , Gordura Subcutânea Abdominal/citologia , Gordura Subcutânea Abdominal/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
8.
Biomaterials ; 53: 12-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890702

RESUMO

The limited efficacy of cardiac cell-based therapy is thought to be due to poor cell retention within the myocardium. Hence, there is an urgent need for biomaterials that aid in long-term cell retention. This study describes the development of injectable microcapsules for the delivery of mesenchymal stem cells (MSCs) into the infarcted cardiac wall. These microcapsules comprise of low concentrations of agarose supplemented with extracellular matrix (ECM) proteins collagen and fibrin. Dextran sulfate, a negatively charged polycarbohydrate, was added to mimic glycosaminoglycans in the ECM. Cell viability assays showed that a combination of all components is necessary to support long-term survival and proliferation of MSCs within microcapsules. Following intramyocardial transplantation, microcapsules degraded slowly in vivo and did not induce a fibrotic foreign body response. Pre-labeling of encapsulated MSCs with iron oxide nanoparticles allowed continued cell-tracking by MRI over several weeks following transplantation into infarcted myocardium. In contrast, MSCs injected as cell suspension were only detectable for two days post transplantation by MRI. Histological analysis confirmed integration of transplanted cells at the infarct site. Therefore, microcapsules proved to be suitable for stem cell delivery into the infarcted myocardium and can overcome current limitations of poor cell retention in cardiac cell-based therapy.


Assuntos
Cápsulas , Proliferação de Células , Sobrevivência Celular , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/patologia , Animais , Masculino , Ratos , Ratos Wistar
9.
Int J Nanomedicine ; 8: 3963-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204135

RESUMO

The platinum (Pt)-group elements (PGEs) represent a new kind of environmental pollutant and a new hazard for human health. Since their introduction as vehicle-exhaust catalysts, their emissions into the environment have grown considerably compared with their low natural concentration in the earth crust. PGE emissions from vehicle catalysts can be also in the form of nanometer-sized particles (Pt nanoparticles [PtNPs]). These elements, both in their metallic form or as ions solubilized in biological media, are now recognized as potent allergens and sensitizers. Human skin is always exposed to toxic particles; therefore, in the present study we addressed the question of whether polyvinylpyrrolidone-coated PtNPs may have any negative effects on skin cells, including predominantly epidermal keratinocytes. In this study, PtNPs of two sizes were used: 5.8 nm and 57 nm, in concentrations of 6.25, 12.5, and 25 µg/mL. Both types of NPs were protected with polyvinylpyrrolidone. Primary keratinocytes were treated for 24 and 48 hours, then cytotoxicity, genotoxicity, morphology, metabolic activity, and changes in the activation of signaling pathways were investigated in PtNP-treated cells. We found that PtNPs trigger toxic effects on primary keratinocytes, decreasing cell metabolism, but these changes have no effects on cell viability or migration. Moreover, smaller NPs exhibited more deleterious effect on DNA stability than the big ones. Analyzing activation of caspases, we found changes in activity of caspase 9 and caspase 3/7 triggered mainly by smaller NPs. Changes were not so significant in the case of larger nanoparticles. Importantly, we found that PtNPs have antibacterial properties, as is the case with silver NPs (AgNPs). In comparison to our previous study regarding the effects of AgNPs on cell biology, we found that PtNPs do not exhibit such deleterious effects on primary keratinocytes as AgNPs and that they also can be used as potential antibacterial agents, especially in the treatment of Escherichia coli, representing a group of Gram-negative species.


Assuntos
Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas , Platina , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Platina/química , Platina/farmacologia , Platina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA