Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 65(4): 721-732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106618

RESUMO

AIMS/HYPOTHESIS: In our modern society, artificial light is available around the clock and most people expose themselves to electrical light and light-emissive screens during the dark period of the natural light/dark cycle. Such suboptimal lighting conditions have been associated with adverse metabolic effects, and redesigning indoor lighting conditions to mimic the natural light/dark cycle more closely holds promise to improve metabolic health. Our objective was to compare metabolic responses to lighting conditions that resemble the natural light/dark cycle in contrast to suboptimal lighting in individuals at risk of developing metabolic diseases. METHODS: Therefore, we here performed a non-blinded, randomised, controlled, crossover trial in which overweight insulin-resistant volunteers (n = 14) were exposed to two 40 h laboratory sessions with different 24 h lighting protocols while staying in a metabolic chamber under real-life conditions. In the Bright day-Dim evening condition, volunteers were exposed to electric bright light (~1250 lx) during the daytime (08:00-18:00 h) and to dim light (~5 lx) during the evening (18:00-23:00 h). Vice versa, in the Dim day-Bright evening condition, volunteers were exposed to dim light during the daytime and bright light during the evening. Randomisation and allocation to light conditions were carried out by sequential numbering. During both lighting protocols, we performed 24 h indirect calorimetry, and continuous core body and skin temperature measurements, and took frequent blood samples. The primary outcome was plasma glucose focusing on the pre- and postprandial periods of the intervention. RESULTS: Spending the day in bright light resulted in a greater increase in postprandial triacylglycerol levels following breakfast, but lower glucose levels preceding the dinner meal at 18:00 h, compared with dim light (5.0 ± 0.2 vs 5.2 ± 0.2 mmol/l, n = 13, p=0.02). Dim day-Bright evening reduced the increase in postprandial glucose after dinner compared with Bright day-Dim evening (incremental AUC: 307 ± 55 vs 394 ± 66 mmol/l × min, n = 13, p=0.009). After the Bright day-Dim evening condition the sleeping metabolic rate was identical compared with the baseline night, whereas it dropped after Dim day-Bright evening. Melatonin secretion in the evening was strongly suppressed for Dim day-Bright evening but not for Bright day-Dim evening. Distal skin temperature for Bright day-Dim evening was lower at 18:00 h (28.8 ± 0.3°C vs 29.9 ± 0.4°C, n = 13, p=0.039) and higher at 23:00 h compared with Dim day-Bright evening (30.1 ± 0.3°C vs 28.8 ± 0.3°C, n = 13, p=0.006). Fasting and postprandial plasma insulin levels and the respiratory exchange ratio were not different between the two lighting protocols at any time. CONCLUSIONS/INTERPRETATION: Together, these findings suggest that the indoor light environment modulates postprandial substrate handling, energy expenditure and thermoregulation of insulin-resistant volunteers in a time-of-day-dependent manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT03829982. FUNDING: We acknowledge the financial support from the Netherlands Cardiovascular Research Initiative: an initiative with support from the Dutch Heart Foundation (CVON2014-02 ENERGISE).


Assuntos
Insulina , Fotoperíodo , Regulação da Temperatura Corporal , Ritmo Circadiano/fisiologia , Metabolismo Energético , Glucose , Humanos
2.
Proc Natl Acad Sci U S A ; 115(4): 792-797, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311335

RESUMO

The human retina contains five photoreceptor types: rods; short (S)-, mid (M)-, and long (L)-wavelength-sensitive cones; and melanopsin-expressing ganglion cells. Recently, it has been shown that selective increments in M-cone activation are paradoxically perceived as brightness decrements, as opposed to L-cone increments. Here we show that similar effects are also observed in the pupillary light response, whereby M-cone or S-cone increments lead to pupil dilation whereas L-cone or melanopic illuminance increments resulted in pupil constriction. Additionally, intermittent photoreceptor activation increased pupil constriction over a 30-min interval. Modulation of L-cone or melanopic illuminance within the 0.25-4-Hz frequency range resulted in more sustained pupillary constriction than light of constant intensity. Opposite results were found for S-cone and M-cone modulations (2 Hz), mirroring the dichotomy observed in the transient responses. The transient and sustained pupillary light responses therefore suggest that S- and M-cones provide inhibitory input to the pupillary control system when selectively activated, whereas L-cones and melanopsin response fulfill an excitatory role. These findings provide insight into functional networks in the human retina and the effect of color-coding in nonvisual responses to light, and imply that nonvisual and visual brightness discrimination may share a common pathway that starts in the retina.


Assuntos
Pupila/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Adulto , Feminino , Humanos , Masculino , Percepção Visual , Adulto Jovem
3.
J Pineal Res ; 67(1): e12583, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31033013

RESUMO

Light significantly improves alertness during the night (Cajochen, Sleep Med Rev, 11, 2007 and 453; Ruger et al., AJP Regul Integr Comp Physiol, 290, 2005 and R1413), but results are less conclusive at daytime (Lok et al., J Biol Rhythms, 33, 2018 and 589). Melatonin and core body temperature levels at those times of day may contribute to differences in alerting effects of light. In this experiment, the combined effect of daytime exogenous melatonin administration and light intensity on alertness, body temperature, and skin temperature was studied. The goal was to assess whether (a) alerting effects of light are melatonin dependent, (b) soporific effects of melatonin are mediated via the thermoregulatory system, and (c) light can improve alertness after melatonin-induced sleepiness during daytime. 10 subjects (5 females, 5 males) received melatonin (5 mg) in dim (10 lux) and, on a separate occasion, in bright polychromatic white light (2000 lux). In addition, they received placebo both under dim and bright light conditions. Subjects participated in all four conditions in a balanced order, yielding a balanced within-subject design, lasting from noon to 04:00 pm. Alertness and performance were assessed half hourly, while body temperature and skin temperature were measured continuously. Saliva samples to detect melatonin concentrations were collected half hourly. Melatonin administration increased melatonin concentrations in all subjects. Subjective sleepiness and distal skin temperature increased after melatonin ingestion. Bright light exposure after melatonin administration did not change subjective alertness scores, but body temperature and proximal skin temperature increased, while distal skin temperature decreased. Light exposure did not significantly affect these parameters in the placebo condition. These results indicate that (a) exogenous melatonin administration during daytime increases subjective sleepiness, confirming a role for melatonin in sleepiness regulation, (b) bright light exposure after melatonin ingestion significantly affected thermoregulatory parameters without altering subjective sleepiness, therefore temperature changes seem nonessential for melatonin-induced sleepiness, (c) subjective sleepiness was increased by melatonin ingestion, but bright light administration was not able to improve melatonin-induced sleepiness feelings nor performance. Other (physiological) factors may therefore contribute to differences in alerting effects of light during daytime and nighttime.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Luz , Melatonina/administração & dosagem , Adulto , Feminino , Humanos , Masculino , Melatonina/metabolismo
4.
J Sleep Res ; 27(2): 165-174, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28880425

RESUMO

Inadequate sleep impairs cognitive function and has been associated with worse academic achievement in higher education students; however, studies that control for relevant background factors and include knowledge on sleep hygiene are scarce. This study examined the association of chronic sleep reduction (i.e. symptoms of chronic sleep reduction such as shortness of sleep, sleepiness and irritation), subjective sleep quality and sleep hygiene knowledge with academic achievement (grades and study credits) and study concentration among 1378 higher education students (71% female, mean age 21.73 years, SD = 3.22) in the Netherlands. Demographic, health, lifestyle and study behaviour characteristics were included as covariates in hierarchical regression analyses. After controlling for significant covariates, only chronic sleep reduction remained a significant predictor of lower grades (last exam, average in current academic year). Better sleep quality and sleep hygiene knowledge were associated with better academic achievement, but significance was lost after controlling for covariates, except for a remaining positive association between sleep hygiene beliefs and grades in the current academic year. Moreover, better sleep quality and lower scores on chronic sleep reduction were associated with better study concentration after controlling for significant covariates. To conclude, chronic sleep reduction is associated with academic achievement and study concentration in higher education students. Inadequate sleep hygiene knowledge is moderately associated with worse academic achievement. Future research should investigate whether sleep hygiene interventions improve academic achievement in students of higher education.


Assuntos
Sucesso Acadêmico , Privação do Sono/epidemiologia , Privação do Sono/psicologia , Higiene do Sono/fisiologia , Estudantes/psicologia , Adolescente , Adulto , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Autorrelato , Sono/fisiologia , Privação do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Distúrbios do Início e da Manutenção do Sono/psicologia , Adulto Jovem
5.
Neuropsychobiology ; 74(4): 202-206, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28637035

RESUMO

BACKGROUND AND AIM: Seasonal patterns of food intake are found in healthy individuals and particularly in patients with seasonal affective disorder (SAD). One nutritional choice is a vegetarian diet. METHODS: In a Finnish population study, FINRISK 2012, information about diet and SAD was collected. In a Dutch outpatient clinic, SAD patients were asked if they were vegetarian. RESULTS: The percentage of SAD patients among Finnish vegetarians was 4 times higher than in the normal population. The percentage of vegetarians among the SAD patients in a Dutch outpatient clinic was 3 times higher than in the normal population. In the Dutch population, the seasonal loss of energy, in particular, is related to vegetarianism. CONCLUSION: These findings suggest a possible link between vegetarianism and SAD.

6.
Eur J Neurosci ; 40(1): 2206-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24898566

RESUMO

Various lines of evidence suggest a mechanistic role for altered cAMP-CREB (cAMP response element - binding protein) signaling in depressive and affective disorders. However, the establishment and validation of human inter-individual differences in this and other major signaling pathways has proven difficult. Here, we describe a novel lentiviral methodology to investigate signaling variation over long periods of time directly in human primary fibroblasts. On a cellular level, this method showed surprisingly large inter-individual differences in three major signaling pathways in human subjects that nevertheless correlated with cellular measures of genome-wide transcription and drug toxicity. We next validated this method by establishing a likely role for cAMP-mediated signaling in a human neuroendocrine response to light - the light-dependent suppression of the circadian hormone melatonin - that shows wide inter-individual differences of unknown origin in vivo. Finally, we show an overall greater magnitude of cellular CREB signaling in individuals with bipolar disorder, suggesting a possible role for this signaling pathway in susceptibility to mental disease. Overall, our results suggest that genetic differences in major signaling pathways can be reliably detected with sensitive viral-based reporter profiling, and that these differences can be conserved across tissues and be predictive of physiology and disease susceptibility.


Assuntos
Transtorno Bipolar/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Luz , Melatonina/metabolismo , Adulto , Células Cultivadas , Estudos de Coortes , Feminino , Fibroblastos/metabolismo , Vetores Genéticos , Humanos , Lentivirus/genética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Transdução de Sinais , População Branca , Adulto Jovem
7.
Biology (Basel) ; 12(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671752

RESUMO

Modern urban human activities are largely restricted to the indoors, deprived of direct sunlight containing visible and near-infrared (NIR) wavelengths at high irradiance levels. Therapeutic exposure to doses of red and NIR, known as photobiomodulation (PBM), has been effective for a broad range of conditions. In a double-blind, randomized, placebo-controlled study, we aimed to assess the effects of a PBM home set-up on various aspects of well-being, health, sleep, and circadian rhythms in healthy human subjects with mild sleep complaints. The effects of three NIR light (850 nm) doses (1, 4, or 6.5 J·cm-2) were examined against the placebo. Exposure was presented five days per week between 9:30 am and 12:30 pm for four consecutive weeks. The study was conducted in both summer and winter to include seasonal variation. The results showed PBM treatment only at 6.5 J·cm-2 to have consistent positive benefits on well-being and health, specifically improving mood, reducing drowsiness, reducing IFN-γ, and resting heart rate. This was only observed in winter. No significant effects on sleep or circadian rhythms were noted. This study provides further evidence that adequate exposure to NIR, especially during low sunlight conditions, such as in the winter, can be beneficial for human health and wellness.

8.
Eur J Sport Sci ; 21(1): 7-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32022640

RESUMO

Despite an elevated recovery need, research indicates that athletes often exhibit relatively poor sleep. Timing and consolidation of sleep is driven by the circadian system, which requires periodic light-dark exposure for stable entrainment to the 24-hour day, but is often disturbed due to underexposure to light in the morning (e.g. low-level indoor lighting) and overexposure to light in the evening (e.g. environmental and screen-light). This study examined whether combining fixed sleep schedules with light regulation leads to more consolidated sleep. Morning light exposure was increased using light-emitting goggles, whereas evening light exposure was reduced using amber-lens glasses. Using a within-subject crossover design, twenty-six athletes (14 female, 12 male) were randomly assigned to start the intervention with the light-regulation-week or the no light-regulation-week. Sleep was monitored by means of sleep diaries and actigraphy. Due to low protocol adherence regarding the fixed sleep-wake schedules, two datasets were constructed; one including athletes who kept a strict sleep-wake schedule (N = 8), and one that also included athletes with a more lenient sleep-wake schedule (N = 25). In case of a lenient sleep-wake schedule, light regulation improved self-reported sleep onset latency (Δ SOL = 8 min). This effect was stronger (Δ SOL = 17 min) and complemented by enhanced subjective sleep quality in case of a strict sleep-wake schedule. None of the actigraphy-based estimates differed significantly between conditions. To conclude, light regulation may be considered a potentially effective strategy to improve subjective sleep, but less obtrusive methods should be explored to increase protocol compliance.


Assuntos
Atletas , Dispositivos de Proteção dos Olhos , Iluminação/métodos , Sono/fisiologia , Vigília/fisiologia , Adulto , Ritmo Circadiano/fisiologia , Cor , Estudos Cross-Over , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Adulto Jovem
9.
J Sleep Res ; 19(3): 425-35, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20408928

RESUMO

The effect of artificial dawn during the last 30 min of sleep on subsequent dissipation of sleep inertia was investigated, including possible involvement of cortisol and thermoregulatory processes. Sixteen healthy subjects who reported difficulty with waking up participated in random order in a control and an artificial dawn night. Sleep inertia severity was measured by subjective ratings of sleepiness and activation, and by performance on an addition and a reaction time task measured at 1, 15, 30, 45, 60, and 90 min after waking up at habitual wake up time at workdays. At all intervals, saliva samples were collected for cortisol analysis. Sleep electroencephalogram was recorded during the 30 min prior to waking up; core body temperature and skin temperatures were recorded continuously until 90 min after waking up. Subjective sleepiness was significantly decreased and subjective activation increased after waking up in the artificial dawn condition as compared with control, in which lights were turned on at waking up. These effects can be explained by effects of artificial dawn on skin temperature and amount of wakefulness during the 30 min prior to the alarm. Artificial dawn accelerated the decline in skin temperature and in the distal-to-proximal skin temperature gradient after getting up. No significant effects of artificial dawn on performance, core body temperature, and cortisol were found. These results suggest that the physiology underlying the positive effects of artificial dawn on the dissipation of sleep inertia involves light sleep and an accelerated skin temperature decline after awakening.


Assuntos
Hidrocortisona/sangue , Temperatura Cutânea/fisiologia , Sono/fisiologia , Vigília/fisiologia , Temperatura Corporal/fisiologia , Eletroencefalografia , Feminino , Humanos , Luz , Masculino , Polissonografia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Fatores de Tempo , Adulto Jovem
10.
J Biol Rhythms ; 24(2): 153-60, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19346452

RESUMO

Studies in humans and mice revealed that circadian phase shifting effects of light are larger at the beginning of a light exposure interval than during subsequent exposure. Little is known about the dynamics of this response reduction phenomenon. Here the authors propose a method to obtain information on the progression of phase during light exposure. Phase response curves to intervals of light exposure over a wide range in duration are available for flesh flies, mice, and humans. By comparing the phase shifts induced by pulses of various durations but starting at the same circadian phase, the progression of phase during a long interval (hours) of light exposure is reconstructed for each of these 3 species. For flies, the phase progression curves show that light pulses-if long enough- eventually make the pacemaker stabilize around InT18 (near subjective dusk), as is typical for strong resetting. The progression of phase toward the final value never shows advances larger than 7 h, while delays can be as large as 18 h. By applying the phase progression curve method presented in this study, differences between advances and delays in type-0 phase response curves can be distinguished clearly. In flesh flies (Sarcophaga) this bifurcation between delays and advance occurs when light exposure starts at InT0 (subjective midnight). The present study confirms earlier findings in mice showing that the beginning of the light pulse generates stronger phase shifts than subsequent hours of light. Response reduction is complete within 1 h of exposure. It is argued that the variation is not so much due to light adaptation processes, but rather to response saturation. In contrast to light adaptation, response saturation is fundamental to proper functioning of the circadian pacemaker during natural entrainment. For understanding entrainment of the pacemaker to natural light, phase progression curves in which naturalistic light profiles are applied could be an important tool.


Assuntos
Ritmo Circadiano/fisiologia , Luz , Fotoperíodo , Animais , Relógios Biológicos/fisiologia , Dípteros/fisiologia , Humanos , Camundongos , Estimulação Luminosa
11.
J Biol Rhythms ; 35(3): 317-319, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31884865

RESUMO

Information is provided about the Chronotherapy Network Netherlands (CNN).


Assuntos
Cronoterapia , Ritmo Circadiano , Serviços de Informação/organização & administração , Humanos , Países Baixos
12.
Front Psychol ; 10: 1762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447730

RESUMO

Mental disorders like major depressive disorder can be modeled as complex dynamical systems. In this study we investigate the dynamic behavior of individuals to see whether or not we can expect a transition to another mood state. We introduce a mean field model to a binomial process, where we reduce a dynamic multidimensional system (stochastic cellular automaton) to a one-dimensional system to analyse the dynamics. Using maximum likelihood estimation, we can estimate the parameter of interest which, in combination with a bifurcation diagram, reflects the expectancy that someone has to transition to another mood state. After numerically illustrating the proposed method with simulated data, we apply this method to two empirical examples, where we show its use in a clinical sample consisting of patients diagnosed with major depressive disorder, and a general population sample. Results showed that the majority of the clinical sample was categorized as having an expectancy for a transition, while the majority of the general population sample did not have this expectancy. We conclude that the mean field model has great potential in assessing the expectancy for a transition between mood states. With some extensions it could, in the future, aid clinical therapists in the treatment of depressed patients.

13.
PLoS One ; 14(3): e0214046, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921336

RESUMO

PURPOSE: The circadian clock is entrained to light by the intrinsically photosensitive retinal ganglion cells. Loss of these cells in glaucoma, an eye disease with loss of retinal ganglion cells as its key feature, might thus result in a change in chronotype. We aimed to compare the chronotype between glaucoma patients and healthy subjects. METHODS: We sent the Munich ChronoType Questionnaire to 221 glaucoma patients (response rate 81%); controls (primary control group) were primarily their spouses. After exclusion of shift workers and participants who woke-up due to an alarm clock on days off, 159 glaucoma patients (88 early, 21 moderate, 23 severe) and 163 controls remained. We calculated chronotype as the mid-sleep on days off, corrected for workweek accumulated sleep debt (MSFsc). We compared means and variances between groups using Welch's tests and F-tests, respectively. A secondary control group was recruited from participants in a citizen-science project (n = 17073) who completed an online questionnaire. A resampling method was applied to enable an age- and gender- matched comparison with the glaucoma patients. RESULTS: Compared to the primary control group, glaucoma did not affect the mean MSFsc (controls 3:47; early, moderate, and severe glaucoma 3:40, 3:45, and 3:33, respectively [P = 0.62]). Chronotype variability seemed to increase with increasing disease severity (severe glaucoma versus controls: P = 0.023). The mean MSFsc of the secondary control group was 3:50 (95% confidence interval 3:48 to 3:52); significantly later than that of the glaucoma patients (3:40; P = 0.024). Mean MSFsc did not differ significantly between the control groups (P = 0.42). CONCLUSIONS: No clear changes were found in the chronotype as determined by sleep phase in patients with glaucoma, especially not in early and moderate glaucoma. In severe glaucoma, chronotype variability seems to increase, possibly alongside a small advancement.


Assuntos
Ritmo Circadiano/fisiologia , Glaucoma de Ângulo Aberto/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Feminino , Humanos , Luz , Masculino , Pessoa de Meia-Idade , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Sono/fisiologia , Inquéritos e Questionários , Fatores de Tempo , Vigília/fisiologia
14.
J Biol Rhythms ; 33(6): 637-648, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30191761

RESUMO

Broad-spectrum light applied during the night has been shown to affect alertness in a dose-dependent manner. The goal of this experiment was to investigate whether a similar relationship could be established for light exposure during daytime. Fifty healthy participants were subjected to a paradigm (0730-1730 h) in which they were intermittently exposed to 1.5 h of dim light (<10 lux) and 1 h of experimental light (24-2000 lux). The same intensity of experimental light was used throughout the day, resulting in groups of 10 subjects per intensity. Alertness was assessed with subjective and multiple objective measures. A significant effect of time of day was found in all parameters of alertness ( p < 0.05). Significant dose-response relationships between light intensity and alertness during the day could be determined in a few of the parameters of alertness at some times of the day; however, none survived correction for multiple testing. We conclude that artificial light applied during daytime at intensities up to 2000 lux does not elicit significant improvements in alertness in non-sleep-deprived subjects.


Assuntos
Atenção/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Luz , Fotoperíodo , Descanso , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Vigília/efeitos da radiação , Tolerância ao Trabalho Programado , Adulto Jovem
15.
Physiol Behav ; 90(2-3): 190-5, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17055008

RESUMO

It is beyond doubt that the timing of sleep is under control of the circadian pacemaker. Humans are a diurnal species; they sleep mostly at night, and they do so at approximately 24-h intervals. If they do not adhere to this general pattern, for instance when working night shifts or when travelling across time zones, they experience the stubborn influence of their circadian clock. In recent years much has been discovered about the organisation of the circadian clock. New photoreceptor cells in the retina have been found to influence the input to the clock, and much of the molecular machinery of the clock has been unravelled. It is now known that the circadian rhythm of sleep and wakefulness is only loosely coupled to the circadian rhythm of the pacemaker. New theories have been proposed for the functions of sleep and the sites at which those functions are executed. In spite of this rapid increase in knowledge of the circadian clock and of sleep regulatory processes, much remains to be discovered concerning the precise interaction between the biological clock and sleep timing. This is particularly unfortunate in view of the 24-h demands of our society for 7 days a week. Too little is known about the negative consequences of the societal pressures on well-being and performance.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Humanos , Modelos Biológicos
16.
Front Neurol ; 8: 167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491049

RESUMO

Sleep problems have not been directly reported in phenylketonuria (PKU). In PKU, the metabolic pathway of phenylalanine is disrupted, which, among others, causes deficits in the neurotransmitters and sleep modulators dopamine, norepinephrine, and serotonin. Understanding sleep problems in PKU patients may help explain the pathophysiology of brain dysfunction in PKU patients. In this explorative study, we investigated possible sleep problems in adult treated PKU patients and untreated PKU mice. In the PKU patients, sleep characteristics were compared to healthy first degree relatives by assessment of sleep disturbances, sleep-wake patterns, and sleepiness with the help of four questionnaires: Holland sleep disorder questionnaire, Pittsburgh sleep quality index, Epworth sleepiness scale, and Munich Chronotype Questionnaire. The results obtained with the questionnaires show that PKU individuals suffer more from sleep disorders, a reduced sleep quality, and an increased latency to fall asleep and experience more sleepiness during the day. In the PKU mice, activity patterns were recorded with passive infrared recorders. PKU mice switched more often between active and non-active behavior and shifted a part of their resting behavior into the active period, confirming that sleep quality is affected as a consequence of PKU. Together, these results give the first indication that sleep problems are present in PKU. More detailed future research will give a better understanding of these problems, which could ultimately result in the improvement of treatment strategies by including sleep quality as an additional treatment target.

17.
J Biol Rhythms ; 32(3): 274-286, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452285

RESUMO

Light is the most potent time cue that synchronizes (entrains) the circadian pacemaker to the 24-h solar cycle. This entrainment process is an interplay between an individual's daily light perception and intrinsic pacemaker period under free-running conditions. Establishing individual estimates of circadian phase and period can be time-consuming. We show that circadian phase can be accurately predicted (SD = 1.1 h for dim light melatonin onset, DLMO) using 9 days of ambulatory light and activity data as an input to Kronauer's limit-cycle model for the human circadian system. This approach also yields an estimated circadian period of 24.2 h (SD = 0.2 h), with longer periods resulting in later DLMOs. A larger amount of daylight exposure resulted in an earlier DLMO. Individuals with a long circadian period also showed shorter intervals between DLMO and sleep timing. When a field-based estimation of tau can be validated under laboratory studies in a wide variety of individuals, the proposed methods may prove to be essential tools for individualized chronotherapy and light treatment for shift work and jetlag applications. These methods may improve our understanding of fundamental properties of human circadian rhythms under daily living conditions.


Assuntos
Relógios Circadianos , Luz , Fotoperíodo , Adulto , Temperatura Corporal , Ritmo Circadiano , Feminino , Humanos , Síndrome do Jet Lag , Masculino , Melatonina , Sono
18.
Psychiatry Res ; 256: 212-218, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646784

RESUMO

To examine whether acute changes in cognitive empathy might mediate the impact of light therapy on mood, we assessed the effects of a single light-therapy session on mood and cognitive empathy in 48 premenstrual women, including 17 who met Premenstrual Symptoms Screening Tool criteria for moderate-to-severe premenstrual syndrome / premenstrual dysphoric disorder (PMS/PMDD). Using a participant-blind between-groups design, 23 women underwent 30min of morning light therapy (5,000lx; blue-enriched polychromatic light, 17,000K) while 25 women had a sham session (200lx, polychromatic light, 5,000K). We administered the Positive Affect and Negative Affect Schedule and the Affect Grid right before and after the intervention, and 60min later upon completion of a computerized empathic accuracy task. There were no significant effects of light condition on cognitive empathy as assessed using the computer task. Nonetheless, bright light reduced negative affect, specifically in women not using hormonal contraceptives. No effects of bright light on mood were observed in women who were using contraceptives. If a single light-therapy session does not alter cognitive empathy, then cognitive empathy may not mediate the impact of light therapy on mood in premenstrual women.


Assuntos
Afeto , Empatia , Fototerapia/métodos , Síndrome Pré-Menstrual/psicologia , Síndrome Pré-Menstrual/terapia , Adulto , Feminino , Humanos , Ciclo Menstrual/psicologia , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
19.
Sleep ; 40(12)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040758

RESUMO

Study objectives: To determine the effect of light exposure on subsequent sleep characteristics under ambulatory field conditions. Methods: Twenty healthy participants were fitted with ambulatory polysomnography (PSG) and wrist-actigraphs to assess light exposure, rest-activity, sleep quality, timing, and architecture. Laboratory salivary dim-light melatonin onset was analyzed to determine endogenous circadian phase. Results: Later circadian clock phase was associated with lower intensity (R2 = 0.34, χ2(1) = 7.19, p < .01), later light exposure (quadratic, controlling for daylength, R2 = 0.47, χ2(3) = 32.38, p < .0001), and to later sleep timing (R2 = 0.71, χ2(1) = 20.39, p < .0001). Those with later first exposure to more than 10 lux of light had more awakenings during subsequent sleep (controlled for daylength, R2 = 0.36, χ2(2) = 8.66, p < .05). Those with later light exposure subsequently had a shorter latency to first rapid eye movement (REM) sleep episode (R2 = 0.21, χ2(1) = 5.77, p < .05). Those with less light exposure subsequently had a higher percentage of REM sleep (R2 = 0.43, χ2(2) = 13.90, p < .001) in a clock phase modulated manner. Slow-wave sleep accumulation was observed to be larger after preceding exposure to high maximal intensity and early first light exposure (p < .05). Conclusions: The quality and architecture of sleep is associated with preceding light exposure. We propose that light exposure timing and intensity do not only modulate circadian-driven aspects of sleep but also homeostatic sleep pressure. These novel ambulatory PSG findings are the first to highlight the direct relationship between light and subsequent sleep, combining knowledge of homeostatic and circadian regulation of sleep by light. Upon confirmation by interventional studies, this hypothesis could change current understanding of sleep regulation and its relationship to prior light exposure. Clinical trial details: This study was not a clinical trial. The study was ethically approved and nationally registered (NL48468.042.14).


Assuntos
Actigrafia/métodos , Ritmo Circadiano/fisiologia , Iluminação , Polissonografia/métodos , Sono/fisiologia , Adulto , Relógios Circadianos/fisiologia , Feminino , Humanos , Masculino , Melatonina/química , Melatonina/metabolismo , Saliva/química , Saliva/metabolismo , Sono REM/fisiologia
20.
J Biol Rhythms ; 20(1): 60-70, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15654071

RESUMO

The mammalian retina contains both visual and circadian photoreceptors. In humans, nocturnal stimulation of the latter receptors leads to melatonin suppression, which might cause reduced nighttime sleepiness. Melatonin suppression is maximal when the nasal part of the retina is illuminated. Whether circadian phase shifting in humans is due to the same photoreceptors is not known. The authors explore whether phase shifts and melatonin suppression depend on the same retinal area. Twelve healthy subjects participated in a within-subjects design and received all of 3 light conditions--1) 10 lux of dim light on the whole retina, 2) 100 lux of ocular light on the nasal part of the retina, and 3) 100 lux of ocular light on the temporal part of the retina--on separate nights in random order. In all 3 conditions, pupils were dilated before and during light exposure. The protocol consisted of an adaptation night followed by a 23-h period of sustained wakefulness, during which a 4-h light pulse was presented at a time when maximal phase delays were expected. Nasal illumination resulted in an immediate suppression of melatonin but had no effect on subjective sleepiness or core body temperature (CBT). Nasal illumination delayed the subsequent melatonin rhythm by 78 min, which is significantly (p= 0.016) more than the delay drift in the dim-light condition (38 min), but had no detectable phase-shifting effect on the CBT rhythm. Temporal illumination suppressed melatonin less than the nasal illumination and had no effect on subjective sleepiness and CBT. Temporal illumination delayed neither the melatonin rhythm nor the CBT rhythm. The data show that the suppression of melatonin does not necessarily result in a reduction of subjective sleepiness and an elevation ofCBT. In addition, 100 lux of bright white light is strong enough to affect the photoreceptors responsible for the suppression of melatonin but not strong enough to have a significant effect on sleepiness and CBT. This may be due to the larger variability of the latter variables.


Assuntos
Regulação da Temperatura Corporal , Ritmo Circadiano , Luz , Melatonina/fisiologia , Retina/fisiologia , Adulto , Feminino , Humanos , Masculino , Pupila/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA