RESUMO
BACKGROUND: The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X. citri pv. citri and one outgroup strain, Xanthomonas citri pv. bilvae were sequenced and compared. RESULTS: The strains from each pathotype form monophyletic clades, with a short branch shared by the A(w) and A pathotypes. Pathotype-specific recombination was detected in seven regions of the alignment. Using Ancestral Character Estimation, 426 SNPs were mapped to the four branches at the base of the A, A*, A(w) and A/A(w) clades. Several genes containing pathotype-specific nonsynonymous mutations have functions related to pathogenicity. The A pathotype is enriched for SNP-containing genes involved in defense mechanisms, while A* is significantly depleted for genes that are involved in transcription. The pathotypes differ by four gene islands that largely coincide with regions of recombination and include genes with a role in virulence. Both A* and A(w) are missing genes involved in defense mechanisms. In contrast to a recent study, we find that there are an extremely small number of pathotype-specific gene presences and absences. CONCLUSIONS: The three pathotypes of X. citri pv. citri that differ in their host ranges largely show genomic differences related to recombination, horizontal gene transfer and single nucleotide polymorphism. We detail the phylogenetic relationship of the pathotypes and provide a set of candidate genes involved in pathotype-specific evolutionary events that could explain to the differences in host range and pathogenicity between them.
Assuntos
Genoma de Planta , Análise de Sequência de DNA/métodos , Xanthomonas/classificação , Xanthomonas/genética , Evolução Molecular , Especificidade de Hospedeiro , Metagenômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação GenéticaRESUMO
Many aspects of the genomes of yeast species in the family Saccharomycetaceae have been well conserved during evolution. They have similar genome sizes, genome contents, and extensive collinearity of gene order along chromosomes. Gene functions can often be inferred reliably by using information from Saccharomyces cerevisiae. Beyond this conservative picture however, there are many instances where a species or a clade diverges substantially from the S. cerevisiae paradigm-for example, by the amplification of a gene family, or by the absence of a biochemical pathway or a protein complex. Here, we review clade-specific features, focusing on genomes sequenced in our laboratory from the post-WGD genera Naumovozyma, Kazachstania and Tetrapisispora, and from the non-WGD species Torulaspora delbrueckii. Examples include the loss of the pathway for histidine synthesis in the cockroach-associated species Tetrapisispora blattae; the presence of a large telomeric GAL gene cluster in To. delbrueckii; losses of the dynein and dynactin complexes in several independent yeast lineages; fragmentation of the MAT locus and loss of the HO gene in Kazachstania africana; and the patchy phylogenetic distribution of RNAi pathway components.
Assuntos
Evolução Molecular , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Torulaspora/genética , Evolução Biológica , Sequência Conservada , Complexo Dinactina , Dineínas/genética , Genes Fúngicos , Histidina/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Família Multigênica/genética , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The whole-genome duplication (WGD) that occurred during yeast evolution changed the basal number of chromosomes from 8 to 16. However, the number of chromosomes in post-WGD species now ranges between 10 and 16, and the number in non-WGD species (Zygosaccharomyces, Kluyveromyces, Lachancea, and Ashbya) ranges between 6 and 8. To study the mechanism by which chromosome number changes, we traced the ancestry of centromeres and telomeres in each species. We observe only two mechanisms by which the number of chromosomes has decreased, as indicated by the loss of a centromere. The most frequent mechanism, seen 8 times, is telomere-to-telomere fusion between two chromosomes with the concomitant death of one centromere. The other mechanism, seen once, involves the breakage of a chromosome at its centromere, followed by the fusion of the two arms to the telomeres of two other chromosomes. The only mechanism by which chromosome number has increased in these species is WGD. Translocations and inversions have cycled telomere locations, internalizing some previously telomeric genes and creating novel telomeric locations. Comparison of centromere structures shows that the length of the CDEII region is variable between species but uniform within species. We trace the complete rearrangement history of the Lachancea kluyveri genome since its common ancestor with Saccharomyces and propose that its exceptionally low level of rearrangement is a consequence of the loss of the non-homologous end joining (NHEJ) DNA repair pathway in this species.
Assuntos
Cromossomos Fúngicos/genética , Evolução Molecular , Modelos Genéticos , Leveduras/genética , Aneuploidia , Centrômero/genética , Duplicação Gênica , Genes Fúngicos/genética , Genoma Fúngico/genética , Kluyveromyces/genética , Ploidias , Recombinação Genética , Saccharomyces/genética , Especificidade da Espécie , Telômero/genética , Translocação Genética , Leveduras/classificação , Zygosaccharomyces/genéticaRESUMO
We investigate yeast sex chromosome evolution by comparing genome sequences from 16 species in the family Saccharomycetaceae, including data from genera Tetrapisispora, Kazachstania, Naumovozyma, and Torulaspora. We show that although most yeast species contain a mating-type (MAT) locus and silent HML and HMR loci structurally analogous to those of Saccharomyces cerevisiae, their detailed organization is highly variable and indicates that the MAT locus is a deletion hotspot. Over evolutionary time, chromosomal genes located immediately beside MAT have continually been deleted, truncated, or transposed to other places in the genome in a process that is gradually shortening the distance between MAT and HML. Each time a gene beside MAT is removed by deletion or transposition, the next gene on the chromosome is brought into proximity with MAT and is in turn put at risk for removal. This process has also continually replaced the triplicated sequence regions, called Z and X, that allow HML and HMR to be used as templates for DNA repair at MAT during mating-type switching. We propose that the deletion and transposition events are caused by evolutionary accidents during mating-type switching, combined with natural selection to keep MAT and HML on the same chromosome. The rate of deletion accelerated greatly after whole-genome duplication, probably because genes were redundant and could be deleted without requiring transposition. We suggest that, despite its mutational cost, switching confers an evolutionary benefit by providing a way for an isolated germinating spore to reform spores if the environment is too poor.
Assuntos
Evolução Molecular , Genes Fúngicos Tipo Acasalamento/genética , Genes de Troca/genética , Saccharomyces cerevisiae/genética , Cromossomos Sexuais/genética , Cromossomos Fúngicos/genética , Sequência Conservada , Elementos de DNA Transponíveis/genética , DNA Fúngico/genética , Ligação Genética , Loci Gênicos/genética , Dados de Sequência Molecular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência/genéticaRESUMO
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Assuntos
Ehrlichia ruminantium , Animais , Ehrlichia ruminantium/genética , Conversão Gênica , Senegal , Virulência/genética , Duplicações Segmentares Genômicas , Ruminantes/genéticaRESUMO
A whole-genome duplication occurred in a shared ancestor of the yeast species Saccharomyces cerevisiae, Saccharomyces castellii and Candida glabrata. Here we trace the subsequent losses of duplicated genes, and show that the pattern of loss differs among the three species at 20% of all loci. For example, several transcription factor genes, including STE12, TEC1, TUP1 and MCM1, are single-copy in S. cerevisiae but are retained in duplicate in S. castellii and C. glabrata. At many loci, different species have lost different members of a duplicated gene pair, so that 4-7% of single-copy genes compared between any two species are not orthologues. This pattern of gene loss provides strong evidence for speciation through a version of the Bateson-Dobzhansky-Muller mechanism, in which the loss of alternative copies of duplicated genes leads to reproductive isolation. We show that the lineages leading to the three species diverged shortly after the whole-genome duplication, during a period of precipitous gene loss. The set of loci at which single-copy paralogues are retained is biased towards genes involved in ribosome biogenesis and genes that evolve slowly, consistent with the hypothesis that reciprocal gene loss is more likely to occur between duplicated genes that are functionally indistinguishable. We propose a simple, unified model in which a single mechanism--passive gene loss-enabled whole--genome duplication and led to the rapid emergence of new yeast species.
Assuntos
Evolução Molecular , Deleção de Genes , Genes Fúngicos/genética , Especiação Genética , Poliploidia , Leveduras/classificação , Leveduras/genética , Alelos , Ordem dos Genes/genética , Genoma Fúngico , Filogenia , Esporos Fúngicos/genética , Esporos Fúngicos/fisiologia , SinteniaRESUMO
Comparative genomics can be used to infer the history of genomic rearrangements that occurred during the evolution of a species. We used the principle of parsimony, applied to aligned synteny blocks from 11 yeast species, to infer the gene content and gene order that existed in the genome of an extinct ancestral yeast about 100 Mya, immediately before it underwent whole-genome duplication (WGD). The reconstructed ancestral genome contains 4,703 ordered loci on eight chromosomes. The reconstruction is complete except for the subtelomeric regions. We then inferred the series of rearrangement steps that led from this ancestor to the current Saccharomyces cerevisiae genome; relative to the ancestral genome we observe 73 inversions, 66 reciprocal translocations, and five translocations involving telomeres. Some fragile chromosomal sites were reused as evolutionary breakpoints multiple times. We identified 124 genes that have been gained by S. cerevisiae in the time since the WGD, including one that is derived from a hAT family transposon, and 88 ancestral loci at which S. cerevisiae did not retain either of the gene copies that were formed by WGD. Sites of gene gain and evolutionary breakpoints both tend to be associated with tRNA genes and, to a lesser extent, with origins of replication. Many of the gained genes in S. cerevisiae have functions associated with ethanol production, growth in hypoxic environments, or the uptake of alternative nutrient sources.
Assuntos
Evolução Molecular , Genoma Fúngico , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Inversão Cromossômica , Elementos de DNA Transponíveis , Rearranjo Gênico , Genes Fúngicos , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Translocação GenéticaRESUMO
Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.
Assuntos
Cerveja , Saccharomyces , Adaptação Fisiológica , Hibridização Genética , Saccharomyces cerevisiaeRESUMO
Zygosaccharomyces rouxii strain ATCC 42981 has been reported to have two copies of several genes including HOG1 and SOD2, whereas the type strain of Z. rouxii (CBS 732) has only one. To investigate the structure of the ATCC 42981 genome we sequenced random fragments from this genome and compared the data to the type strain. We found that ATCC 42981 contains two versions of the ribosomal RNA array, one of which is identical in the ITS1-ITS2 and 26S D1/D2 regions to Z. rouxii CBS 732, while the other is almost identical to a species provisionally named Z. pseudorouxii. We found that most genomic regions from Z. rouxii CBS 732 map in a one-to-two fashion to pairs of regions in ATCC 42981, with one of the ATCC 42981 regions having 97-100% DNA sequence identity to CBS 732 and the other having about 80-90% identity. Complete sequencing of regions containing 30 pairs of genes from ATCC 42981 and their orthologues in CBS 732 showed no evidence of the gene deletions or pseudogene formation that might be expected if ATCC 42981 had undergone whole-genome duplication several million years ago and was in the early stages of gene loss. Instead, we conclude that ATCC 42981 is a Z. rouxii-Z. pseudorouxii interspecies hybrid that was formed so recently that its genome has not had time to decay.
Assuntos
Evolução Molecular , Genoma Fúngico , Poliploidia , Zygosaccharomyces/genética , Sequência de Bases , DNA Espaçador Ribossômico/genética , Microbiologia de Alimentos , Dados de Sequência Molecular , RNA Fúngico/genética , RNA Ribossômico/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido NucleicoRESUMO
Yeasts have been used for food and beverage fermentations for thousands of years. Today, numerous different strains are available for each specific fermentation process. However, the nature and extent of the phenotypic and genetic diversity and specific adaptations to industrial niches have only begun to be elucidated recently. In Saccharomyces, domestication is most pronounced in beer strains, likely because they continuously live in their industrial niche, allowing only limited genetic admixture with wild stocks and minimal contact with natural environments. As a result, beer yeast genomes show complex patterns of domestication and divergence, making both ale (S. cerevisiae) and lager (S. pastorianus) producing strains ideal models to study domestication and, more generally, genetic mechanisms underlying swift adaptation to new niches.
Assuntos
Cerveja/microbiologia , Variação Genética , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces/genética , Fermentação , Saccharomyces/classificaçãoRESUMO
A novel algorithm harnesses phylogenetic information and facilitates a better understanding of the evolutionary divergence of gene regulation between species.
Assuntos
Evolução Molecular , Genoma , Evolução Biológica , Regulação da Expressão Gênica , FilogeniaRESUMO
The disease, Heartwater, caused by the Anaplasmataceae E. ruminantium, represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of Ehrlichia ruminantium within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 E. ruminantium isolates circulating worldwide using Multilocus Sequence Typing based on lipA, lipB, secY, sodB, and sucA genes. Phylogenetic trees and networks were generated using BEAST and SplitsTree, respectively, and recombination between the different genetic groups was tested using the PHI test for recombination. Our study reveals the repeated occurrence of recombination between E. ruminantium strains, suggesting that it may occur frequently in the genome and has likely played an important role in the maintenance of genetic diversity and the evolution of E. ruminantium. Despite the unclear phylogeny and phylogeography, E. ruminantium isolates are clustered into two main groups: Group 1 (West Africa) and a Group 2 (worldwide) which is represented by West, East, and Southern Africa, Indian Ocean, and Caribbean strains. Some sequence types are common between West Africa and Caribbean and between Southern Africa and Indian Ocean strains. These common sequence types highlight two main introduction events due to the movement of cattle: from West Africa to Caribbean and from Southern Africa to the Indian Ocean islands. Due to the long branch lengths between Group 1 and Group 2, and the propensity for recombination between these groups, it seems that the West African clusters of Subgroup 2 arrived there more recently than the original divergence of the two groups, possibly with the original waves of domesticated ruminants that spread across the African continent several thousand years ago.
Assuntos
Anaplasmataceae/genética , Ehrlichia ruminantium/genética , Evolução Molecular , Variação Genética/genética , Genótipo , Recombinação Genética , África/epidemiologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , DNA Bacteriano , Ehrlichia ruminantium/classificação , Ehrlichia ruminantium/isolamento & purificação , Ehrlichia ruminantium/patogenicidade , Hidropericárdio/sangue , Hidropericárdio/epidemiologia , Hidropericárdio/microbiologia , Ilhas do Oceano Índico/epidemiologia , Moçambique/epidemiologia , Tipagem de Sequências Multilocus/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos , Superóxido Dismutase/genética , Carrapatos/microbiologiaRESUMO
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.