Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 21(9): 2651-62, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23523385

RESUMO

Muscarinic acetylcholine receptors (mAChRs) have five known subtypes which are widely distributed in both the peripheral and central nervous system for regulation of a variety of cholinergic functions. Atropine is a well known muscarinic subtype non-specific antagonist that competitively inhibits acetylcholine (ACh) at postganglionic muscarinic sites. Atropine is used to treat organophosphate (OP) poisoning and resulting seizures in the warfighter because it competitively inhibits acetylcholine (ACh) at the muscarinic cholinergic receptors. ACh accumulates due to OP inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes ACh. However, atropine produces several unwanted side-effects including dilated pupils, blurred vision, light sensitivity, and dry mouth. To overcome these side-effects, our goal was to find an alternative to atropine that emphasizes M1 (seizure prevention) antagonism but has minimum M2 (cardiac) and M3 (e.g., eye) antagonism so that an effective less toxic medical countermeasure may be developed to protect the warfighter against OP and other chemical warfare agents (CWAs). We adopted an in silico pharmacophore modeling strategy to develop features that are characteristics of known M1 subtype-selective compounds and used the model to identify several antagonists by screening an in-house (WRAIR-CIS) compound database. The generated model for the M1 selectivity was found to contain two hydrogen bond acceptors, one aliphatic hydrophobic, and one ring aromatic feature distributed in a 3D space. From an initial identification of about five hundred compounds, 173 compounds were selected through principal component and cluster analyses and in silico ADME/Toxicity evaluations. Next, these selected compounds were evaluated in a subtype-selective in vitro radioligand binding assay. Twenty eight of the compounds showed antimuscarinic activity. Nine compounds showed specificity for M1 receptors and low specificity for M3 receptors. The pK(i) values of the compounds range from 4.5 to 8.5 nM in comparison to a value of 8.7 nM for atropine. 2-(diethylamino)ethyl 2,2-diphenylpropanoate (ZW62841) was found have the best desired selectivity. None of the newly found compounds were previously reported to exhibit antimuscarinic specificity. Both theoretical and experimental results are presented.


Assuntos
Atropina/farmacologia , Simulação por Computador , Descoberta de Drogas/métodos , Receptor Muscarínico M1/antagonistas & inibidores , Atropina/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
2.
Chem Res Toxicol ; 23(1): 26-36, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20028185

RESUMO

Organophosphorus (OP) nerve agents that inhibit acetylcholinesterase (AChE; EC 3.1.1.7) function in the nervous system, causing acute intoxication. If untreated, death can result. Inhibited AChE can be reactivated by oximes, antidotes for OP exposure. However, OP intoxication caused by the nerve agent tabun (GA) is particularly resistant to oximes, which poorly reactivate GA-inhibited AChE. In an attempt to develop a rational strategy for the discovery and design of novel reactivators with lower toxicity and increased efficacy in reactivating GA-inhibited AChE, we developed the first in silico pharmacophore model for binding affinity of GA-inhibited AChE from a set of 11 oximes. Oximes were analyzed for stereoelectronic profiles and three-dimensional quantitative structure-activity relationship pharmacophores using ab initio quantum chemical and pharmacophore generation methods. Quantum chemical methods were sequentially used from semiempirical AM1 to hierarchical ab initio calculations to determine the stereoelectronic properties of nine oximes exhibiting affinity for binding to GA-inhibited AChE in vivo. The calculated stereoelectronic properties led us to develop the in silico pharmacophore model using CATALYST methodology. Specific stereoelectronic profiles including the distance between bisquarternary nitrogen atoms of the pyridinium ring in the oximes, hydrophilicity, surface area, nucleophilicity of the oxime oxygen, and location of the molecular orbitals on the isosurfaces have important roles for potencies for reactivating GA-inhibited AChE. The in silico pharmacophore model of oxime affinity for binding to GA-inhibited AChE was found to require a hydrogen bond acceptor, a hydrogen bond donor at the two terminal regions, and an aromatic ring in the central region of the oximes. The model was found to be well-correlated (R = 0.9) with experimental oxime affinity for binding to GA-inhibited AChE. Additional stereoelectronic features relating activity with the location of molecular orbitals and weak electrostatic potential field over the aromatic rings were found to be consistent with the pharmacophore model. These results provided the first predictive pharmacophore model of oxime affinity for binding toward GA-inhibited AChE. The model may be useful for virtual screening of compound libraries to discover and/or custom synthesize more efficacious and less toxic reactivators that may be useful for GA intoxication.


Assuntos
Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/química , Organofosfatos/toxicidade , Oximas/química , Acetilcolinesterase , Sítios de Ligação , Reativadores da Colinesterase/farmacologia , Desenho de Fármacos , Modelos Químicos , Oximas/farmacologia , Relação Quantitativa Estrutura-Atividade , Teoria Quântica , Estereoisomerismo
3.
J Cell Biochem ; 108(3): 660-7, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19681043

RESUMO

BoNT/B light chain is a zinc-dependent endopeptidase. After entering its target, the neuronal cell, BoNT/B is responsible for synaptobrevin-2 (VAMP-2) cleavage. This results in reduced neurotransmitter (acetylcholine) release from synaptic vesicles, yielding muscular paralysis. Since the toxin persists in neuronal cells for an extended period, regeneration of VAMP-2 is prevented. We evaluated therapeutic targets to overcome botulinum persistence because early removal would rescue the neuronal cell. The ubiquitination/proteasome cellular pathway is responsible for removing "old" or undesirable proteins. Therefore, we assessed ubiquitination of BoNT/B light chain in vitro, and characterized the effects of ubiquitination modulating drugs, PMA (phorbol 12-myristate 13-acetate) and expoxomicin, on ubiquitination of BoNT/B light chain in neuronal cells. Both drugs altered BoNT/B light chain ubiquitination. Ubiquitination in vitro and in cells decreased the biological activity of BoNT/B light chain. These results further elucidate BoNT protein degradation pathways in intoxicated neuronal cells and mechanisms to enhance toxin removal.


Assuntos
Toxinas Botulínicas/metabolismo , Neurônios/metabolismo , Proteínas Ubiquitinadas/metabolismo , Western Blotting , Toxinas Botulínicas Tipo A , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Humanos , Neurônios/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Ubiquitinação/efeitos dos fármacos , Proteína 2 Associada à Membrana da Vesícula/metabolismo
4.
J Cell Biochem ; 107(5): 1021-30, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19492407

RESUMO

The light chain (LC) of botulinum neurotoxin B (BoNT/B) is unable to enter target neuronal cells by itself. It is brought into the cell in association with the BoNT/B heavy chain (HC) through endocytosis. The BoNT HC-LC subunits are held together by a single disulfide bond. Intracellular reduction of this bond and separation of the two subunits activates the endopeptidase activity of the LC. This requirement suggests a strategy to prevent uptake by prophylactic reduction to disrupt the disulfide bond prior to endocytosis of the complex. We examined the utility of tris-(2-carboxyethyl)-phosphine hydrochloride (TCEP), a relatively non-toxic, non-sulfur containing disulfide bond reducing agent that lacks the undesirable properties of mercapto-containing reducing agents. We found that TCEP was as effective as DTT with maximal LC endopeptidase activation occurring at 1 mM, a concentration not toxic to the human neuronal cell line, SHSY-5Y. In these cells, 1 mM TCEP maximally protected against BoNT/B inhibition of [(3)H]-NA release, achieving 72% of the release from un-intoxicated controls. This effect appears to be due to the sparing of SNARE proteins as the levels of VAMP-2, the specific target of BoNT/B, were protected. These results show that TCEP disrupts the structure of BoNT/B by reduction of the LC and HC bridging disulfide bond and prevents neuronal intoxication. Since disulfide bond coupling between toxin subunits is a general motif for many toxins, e.g., ricin, snake venom, and all BoNT serotypes, this suggests that TCEP is a promising means to protect against these toxins by preventing cell penetration.


Assuntos
Toxinas Botulínicas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosfinas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Toxinas Botulínicas/química , Toxinas Botulínicas Tipo A , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fluorometria , Humanos , Hidroxiureia/farmacologia , Norepinefrina/metabolismo , Oxirredução/efeitos dos fármacos , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
5.
Toxicol Appl Pharmacol ; 239(3): 251-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19523969

RESUMO

We evaluated the protective efficacy of nasal atropine methyl bromide (AMB) which does not cross the blood-brain barrier against sarin inhalation exposure. Age and weight matched male guinea pigs were exposed to 846.5 mg/m(3) sarin using a microinstillation inhalation exposure technique for 4 min. The survival rate at this dose was 20%. Post-exposure treatment with nasal AMB (2.5 mg/kg, 1 min) completely protected against sarin induced toxicity (100% survival). Development of muscular tremors was decreased in animals treated with nasal AMB. Post-exposure treatment with nasal AMB also normalized acute decrease in blood oxygen saturation and heart rate following sarin exposure. Inhibition of blood AChE and BChE activities following sarin exposure was reduced in animals treated with nasal AMB, indicating that survival increases the metabolism of sarin or expression of AChE. The body weight loss of animals exposed to sarin and treated with nasal AMB was similar to saline controls. No differences were observed in lung accessory lobe or tracheal edema following exposure to sarin and subsequent treatment with nasal AMB. Total bronchoalveolar lavage fluid (BALF) protein, a biomarker of lung injury, showed trends similar to saline controls. Surfactant levels post-exposure treatment with nasal AMB returned to normal, similar to saline controls. Alkaline phosphatase levels post-exposure treatment with nasal AMB were decreased. Taken together, these data suggest that nasal AMB blocks the copious airway secretion and peripheral cholinergic effects and protects against lethal inhalation exposure to sarin thus increasing survival.


Assuntos
Derivados da Atropina/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Parassimpatolíticos/uso terapêutico , Sarina/toxicidade , Acetilcolinesterase/sangue , Acetilcolinesterase/metabolismo , Administração Intranasal , Fosfatase Alcalina/metabolismo , Animais , Derivados da Atropina/administração & dosagem , Peso Corporal/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Butirilcolinesterase/sangue , Butirilcolinesterase/metabolismo , Contagem de Células , Relação Dose-Resposta a Droga , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Instilação de Medicamentos , Pulmão/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Oxigênio/sangue , Parassimpatolíticos/administração & dosagem , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/prevenção & controle , Surfactantes Pulmonares/metabolismo , Fatores de Tempo
6.
Bioorg Med Chem ; 17(11): 3999-4012, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409797

RESUMO

Muscarinic acetylcholine receptors (mAChRs) consisting of five known subtypes, are widely distributed in both central and peripheral nervous systems for regulation of a variety of critical functions. The present theoretical study describes correlations between experimental and calculated molecular properties of 15 alpha-substituted 2,2-diphenylpropionate antimuscarinics using quantum chemical and pharmacophore generation methods to characterize the drug mAChR properties and design new therapeutics. The calculated stereoelectronic properties, such as total energies, bond distances, valence angles, torsion angles, HOMO-LUMO energies, reactivity indices, vibrational frequencies of ether and carbonyl moieties, and nitrogen atom proton affinity were found to be well correlated when compared with experimentally determined inhibition constants from the literature using three muscarinic receptor assays: [(3)H]NMS receptor binding, alpha-amylase release from rat pancreas, and guinea pig ileum contraction. In silico predicted toxicity on rat oral LD(50) values correlated well with the [(3)H]NMS binding in N4TG1 cells and alpha-amylase release assays, but not the ileum contraction assay. Next, to explore the functional requirements for potent activity of the compounds, we developed a preliminary 3D pharmacophore model using the in silico techniques. The resulting model contained a hydrogen bond acceptor site on the carbonyl oxygen atom and a ring aromatic feature on one of the two aromatic rings in these compounds. This model was used as a template to search an in-house database for novel analogs. We found compounds equal in inhibition potency to atropine and, importantly, six not reported before as antimuscarinics. These results demonstrate that this QSAR approach not only provides a basis for understanding the molecular mechanism of action but a pharmacophore to aid in the discovery and design of novel potent muscarinic antagonists.


Assuntos
Antagonistas Muscarínicos/isolamento & purificação , Propionatos/química , Teoria Quântica , Animais , Atropina/farmacologia , Linhagem Celular , Cobaias , Ílio/efeitos dos fármacos , Estrutura Molecular , Antagonistas Muscarínicos/química , Antagonistas Muscarínicos/metabolismo , Antagonistas Muscarínicos/farmacologia , Pâncreas/efeitos dos fármacos , Propionatos/farmacologia , Relação Quantitativa Estrutura-Atividade , Ratos
7.
Inhal Toxicol ; 21(7): 1-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19229713

RESUMO

We investigated the toxic effects of the chemical warfare nerve agent (CWNA) soman (GD) on the respiratory dynamics of guinea pigs following microinstillation inhalation exposure. Male Hartley guinea pigs were exposed to 841 mg/m3 of GD or saline for 4 min. At 24 and 48 h post GD exposure, respiratory dynamics and functions were monitored for 75 min after 1 h of stabilization in a barometric whole-body plethysmograph. GD-exposed animals showed a significant increase in respiratory frequency (RF) at 24 h postexposure compared to saline controls.The 24-h tidal volume (TV) increased in GD-exposed animals during the last 45 min of the 75-min monitoring period in the barometric whole-body plethysmograph. Minute ventilation also increased significantly at 24 h post GD exposure. The peak inspiratory flow (PIF) increased, whereas peak expiratory flow (PEF) decreased at 24 h and was erratic following GD exposure. Animals exposed to GD showed a significant decrease in expiratory(Te) and inspiratory time (Ti). Although end inspiratory pause (EIP) and end expiratory pause (EEP) were both decreased 24 h post GD exposure, EEP was more evident. Pause (P) decreased equally during the 75-min recording in GD-exposed animals, whereas the pseudo lung resistance (Penh) decreased initially during the monitoring period but was near control levels at the end of the 75-min period. The 48-h respiratory dynamics and function parameter were lower than 24 post GD exposures. These results indicate that inhalation exposure to soman in guinea pigs alters respiratory dynamics and function at 24 and 48 h postexposure


Assuntos
Exposição por Inalação/efeitos adversos , Mecânica Respiratória/efeitos dos fármacos , Soman/administração & dosagem , Soman/toxicidade , Animais , Cobaias , Masculino , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/fisiologia
8.
Int J Toxicol ; 28(5): 436-47, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19815847

RESUMO

This study investigates the toxic effects of sarin on respiratory dynamics following microinstillation inhalation exposure in guinea pigs. Animals are exposed to sarin for 4 minutes, and respiratory functions are monitored at 4 hours and 24 hours by whole-body barometric plethysmography. Data show significant changes in respiratory dynamics and function following sarin exposure. An increase in respiratory frequency is observed at 4 hours post exposure compared with saline controls. Tidal volume and minute volume are also increased in sarin-exposed animals 4 hours after exposure. Peak inspiratory flow increases, whereas peak expiratory flow increases at 4 hours and is erratic following sarin exposure. Animals exposed to sarin show a significant decrease in expiratory time and inspiratory time. End-inspiratory pause is unchanged whereas end-expiratory pause is slightly decreased 24 hours after sarin exposure. These results indicate that inhalation exposure to sarin alters respiratory dynamics and function at 4 hours, with return to normal levels at 24 hours post exposure.


Assuntos
Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Edema Pulmonar/induzido quimicamente , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Sarina/toxicidade , Acetilcolinesterase/sangue , Animais , Peso Corporal/efeitos dos fármacos , Cobaias , Dose Letal Mediana , Pulmão/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Oxigênio/sangue , Pletismografia Total , Edema Pulmonar/sangue , Edema Pulmonar/patologia
9.
J Cell Biochem ; 105(1): 129-35, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18459116

RESUMO

BoNT/B holotoxin (HT) from the native source is a mixture of nicked and un-nicked forms. A previous study showed that while un-nicked HT could be transcytosed by intestinal epithelial cells, they did not correlate this with proteolytic activity or biological effect(s). Un-nicked HT is likely to be present in BoNT biological warfare agents (BWA), so it is important to investigate the relative toxicity of un-nicked HT in this BWA. To address this issue, we purified un-nicked HT from commercial sources and evaluated its ability to cleave substrates both in vitro and in vivo, and its effects on vesicle trafficking. The un-nicked HT was unable to cleave VAMPTide substrate used for in vitro proteolytic assays. Brief digestion of the un-nicked toxin with trypsin resulted in significant activation of the toxin proteolytic ability. SHSY-5Y human neuroblastoma cells were used to examine HT uptake and activation in vivo. Vesicle trafficking can be measured following K(+) stimulation of cells preloaded with [(3)H]-noradrenaline (NA). We found that highly purified un-nicked HT did inhibit NA release but at much reduced levels compared to the nicked toxin. That the reduction in NA release was due to BoNT effects on SNARE proteins was supported by the finding that VAMP-2 protein levels in un-nicked toxin treated cells was greater than those treated with nicked toxin. These results demonstrate that although un-nicked HT has markedly reduced toxicity than the nicked form, due to the preponderance in BoNT/B preparations from the native bacteria, it is a major source of toxicity.


Assuntos
Glicosídeos/farmacologia , Neurônios/efeitos dos fármacos , Triterpenos/farmacologia , Linhagem Celular Tumoral , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Glicosídeos/isolamento & purificação , Glicosídeos/metabolismo , Humanos , Neurônios/metabolismo , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
10.
J Cell Biochem ; 103(5): 1524-35, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17879943

RESUMO

Current advances in enzyme bioscavenger prophylactic therapy against chemical warfare nerve agent (CWNA) exposure are moving towards the identification of catalytic bioscavengers that can degrade large doses of organophosphate (OP) nerve agents without self destruction. This is a preferred method compared to therapy with the purified stoichiometric bioscavenger, butyrylcholinesterase, which binds OPs 1:1 and would thus require larger doses for treatment. Paraoxonase-1 (PON-1) is one such catalytic bioscavenger that has been shown to hydrolyze OP insecticides and contribute to detoxification in animals and humans. Here we investigated the effects of a common red wine ingredient, Resveratrol (RSV), to induce the expression of PON-1 in the human hepatic cell line HC04 and evaluated the protection against CWNA simulants. Dose-response curves showed that a concentration of 20 microM RSV was optimal in inducing PON-1 expression in HC04 cells. RSV at 20 microM increased the extracellular PON-1 activity approximately 150% without significantly affecting the cells. Higher doses of RSV were cytotoxic to the cells. Resveratrol also induced PON-1 in the human lung cell line A549. RSV pre-treatment significantly (P = 0.05) protected the hepatic cells against exposure to 2x LD(50) of soman and sarin simulants. However, lung cells were protected against soman simulant exposure but not against sarin simulant exposure following RSV treatment. In conclusion, these studies indicate that dietary inducers, such as RSV, can up-regulate PON-1, a catalytic bioscavenger, which can then hydrolyze and protect against CWNA-induced toxicity, providing a prospective new method to protect against CWNA exposure.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Arildialquilfosfatase/metabolismo , Substâncias para a Guerra Química/toxicidade , Sarina/toxicidade , Soman/toxicidade , Estilbenos/farmacologia , Animais , Butirilcolinesterase/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Indução Enzimática/efeitos dos fármacos , Humanos , Camundongos , Resveratrol
11.
Chem Biol Interact ; 175(1-3): 417-20, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18555983

RESUMO

Red blood cell AChE (RBC-AChE) and plasma BChE can be used as sensitive biomarkers to detect exposure to OP nerve agents, pesticides, and cholinergic drugs. In a comparative study, RBC-AChE and serum BChE activities in whole blood was obtained from forty seven healthy male and female human volunteers, and then exposed separately ex vivo to three OP nerve agents (soman (GD), sarin (GB) and VX) to generate a wide range of inhibition of AChE and BChE activity (up to 90% of control). These samples were measured using four different ChE assays: (i) colorimetric microEllman (using DTNB at 412 nm), (ii) Test-mate ChE field kit (also based on the Ellman assay), (iii) Michel (delta pH), and (iv) the Walter Reed Army Institute of Research Whole Blood (WRAIR WB) cholinesterase assay. The WRAIR assay is a modified Ellman method using DTP at 324 nm (which minimizes hemoglobin interference and improves sensitivity), and determines AChE and BChE in a small whole blood sample simultaneously. Scatter plots of RBC-AChE activities were determined using the WRAIR ChE assay versus the micro-Ellman, Test-mate and Michel after exposure to varying concentrations of soman, sarin and VX. Regression analyses yielded mostly linear relationships with high correlations (r2 = 0.83-0.93) for RBC-AChE values in the WRAIR assay compared to the alternate methods. For the plasma BChE measurements, individual human values were significantly more variable (as expected), resulting in lower correlations using WRAIR ChE versus the alternate assays (r2 values 0.5 - 0.6). To circumvent the limitations of simple correlation analysis, Bland and Altman analysis for comparing two independent measurement techniques was performed. For example, a Bland and Altman plot of the ratio of the WRAIR whole blood AChE and Michel AChE (plotted on the y-axis) vs. the average of the two methods (x-axis) shows that the majority of the individual AChE values are within +/- 1.96 S.D. of the mean difference, indicating that the two methods may be used interchangeably with a high degree of confidence. The WRAIR ChE assay can be thus be used as a reliable inter-conversion assay when comparing results from laboratory-based (Michel) and field-based (Test-mate ChE kit), which use different methodology and report in different units of AChE activity.


Assuntos
Acetilcolinesterase/sangue , Butirilcolinesterase/sangue , Adolescente , Adulto , Idoso , Substâncias para a Guerra Química/toxicidade , Eritrócitos/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organofosforados/toxicidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
Chem Biol Interact ; 175(1-3): 387-95, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18588864

RESUMO

The toxicity of organophosphorous (OP) nerve agents is attributed to their irreversible inhibition of acetylcholinesterase (AChE), which leads to excessive accumulation of acetylcholine (ACh) and is followed by the release of excitatory amino acids (EAA). EAAs sustain seizure activity and induce neuropathology due to over-stimulation of N-methyl-d-aspartate (NMDA) receptors. Huperzine A (Hup A), a blood-brain barrier permeable selective reversible inhibitor of AChE, has been shown to reduce EAA-induced cell death by interfering with glutamate receptor-gated ion channels in primary neuronal cultures. Although [-]-Hup A, the natural isomer, inhibits AChE approximately 38-fold more potently than [+]-Hup A, both [-]- and [+]-Hup A block the NMDA channel similarly. Here, we evaluated the protective efficacy of [+]-Hup A for NMDA-induced seizure in a rat model. Rats implanted with radiotelemetry probes to record electroencephalography (EEG), electrocardiography (ECG), body temperature, and physical activity were administered various doses of [+]-Hup A (intramuscularly) and treated with 20 microg/kg NMDA (intracerebroventricular) 20-30 min later. For post-exposure, rats were treated with [+]-Hup A (3 mg/kg, intramuscularly) 1 min after NMDA (20 microg/kg). Our data showed that pre- and post-exposure, [+]-Hup A (3 mg/kg) protects animals against NMDA-induced seizures. Also, NMDA-administered animals showed increased survival following [+]-Hup A treatment. [+]-Hup A has no visible effect on EEG, heart-rate, body temperature, or physical activity, indicating a reduced risk of side effects, toxicity, or associated pathology. Our results suggest that [+]-Hup A protects against seizure and status epilepticus (SE) by blocking NMDA-induced excitotoxicity in vivo. We propose that [+]-Hup A, or a unique combination of [+]- and [-]-Hup A, may prove to be effective for pre- and post-exposure treatment of lethal doses of OP-induced neurotoxicity.


Assuntos
N-Metilaspartato/toxicidade , Convulsões/prevenção & controle , Sesquiterpenos/uso terapêutico , Estado Epiléptico/prevenção & controle , Acetilcolinesterase/sangue , Alcaloides , Animais , Temperatura Corporal , Modelos Animais de Doenças , Eletroencefalografia , Frequência Cardíaca , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
13.
Chem Biol Interact ; 175(1-3): 380-6, 2008 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-18572153

RESUMO

As part of a phase Ib clinical trial to determine the tolerability and safety of the highly specific acetylcholinesterase (AChE) inhibitor huperzine A, twelve (12) healthy elderly individuals received an escalating dose regimen of huperzine A (100, 200, 300, and 400 microg doses, twice daily for a week at each dose), with three (3) individuals as controls receiving a placebo. Using the WRAIR whole blood cholinesterase assay, red blood cell AChE and plasma butyrylcholinesterase (BChE) were measured in unprocessed whole blood samples from the volunteers following each dose, and then for up to 48h following the final and highest (400 microg) dose to monitor the profile of inhibition and recovery of AChE. Significant inhibition of AChE was observed, ranging from 30-40% after 100 microg to >50% at 400 microg, and peaking 1.5h after the last dose. Gradual recovery of AChE activity then occurs, but even 48 h after the last dose red blood cell AChE was about 10% below control (pre-dose) values. Huperzine A levels in plasma peaked 1.5h after the final 400 microg dose (5.47+/-2.15 ng/mL). Plasma BChE was unaffected by huperzine A treatment (as expected). Aliquots of huperzine A-containing (from three individuals) and placebo blood samples were exposed ex vivo to the irreversible nerve agent soman (GD) for 10 min, followed by removal of unbound huperzine and soman from the blood by passing through a small C(18) reverse phase spin column. Eluted blood was diluted in buffer, and aliquots taken at various time intervals for AChE and BChE activity measurement to determine the time taken to achieve full return in activity of the free enzyme (dissociation from the active site of AChE by huperzine A), and thus the proportion of AChE that can be protected from soman exposure. Huperzine A-inhibited red blood cell (RBC) AChE activity was restored almost to the level that was initially inhibited by the drug. The increased doses of huperzine A used were well tolerated by these patients and in this ex vivo study sequestered more red blood cell AChE than has been previously demonstrated for pyridostigmine bromide (PB), indicating the potential improved prophylaxis against organophosphate (OP) poisoning.


Assuntos
Acetilcolinesterase/sangue , Butirilcolinesterase/sangue , Eritrócitos/efeitos dos fármacos , Sesquiterpenos/administração & dosagem , Soman/farmacologia , Administração Oral , Idoso , Alcaloides , Relação Dose-Resposta a Droga , Eritrócitos/enzimologia , Humanos
14.
Inhal Toxicol ; 20(9): 821-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645722

RESUMO

We determined acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition in the bronchoalveolar lavage fluid (BALF) following inhalation exposure to chemical threat nerve agent (CTNA) sarin. Age- and weight-matched male guinea pigs were exposed to five different doses of sarin (169.3, 338.7, 508, 677.4, and 846.5 mg/m(3)) using a microinstillation inhalation exposure technique for 4 min. The technique involves aerosolization of the agent in the trachea using a microcatheter with a center hole that delivers the agent and multiple peripheral holes that pumps air to aerosolize the agent at the tip. Animals exposed to higher doses of sarin occasionally developed seizures and succumbed to death within 15 min after exposure. The LCt(50) for sarin using the microinstillation technique was determined to be close to 677.4 mg/m(3). Ear blood AChE activity showed a dose-dependent inhibition at 15 min postexposure. The inhibition of blood AChE remained constant over 35 and 55 min after sarin exposure indicating that there was no lung depot effect. Cardiac blood AChE and butyrylcholinesterase (BChE) activity in surviving animals euthanized at 24 h postexposure showed a dose-dependent inhibition with an inhibition of 60% at 677.4 and 846.5 mg/m(3) sarin exposure. AChE and BChE activity in bronchoalveolar lavage fluid (BALF) showed a slight increase at 338.7 to 677.4 mg/m(3) sarin exposure but a marginal inhibition at 169.3 mg/m(3). In contrast, the AChE protein levels determined by immunoblotting showed an increase at 169.3 mg/m(3) in the BALF. The BALF protein level, a biomarker of lung injury, was increased maximally at 338.7 mg/m(3) and that increase was dropped with an increase in the dose of sarin. The BALF protein levels correlated with the AChE and BChE activity. These data suggest that sarin microinstillation inhalation exposure results in respiratory toxicity and lung injury characterized by changes in lavage AChE, BChE, and protein levels.


Assuntos
Acetilcolinesterase/sangue , Líquido da Lavagem Broncoalveolar/química , Butirilcolinesterase/sangue , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Pneumopatias/enzimologia , Pulmão/efeitos dos fármacos , Sarina/toxicidade , Administração por Inalação , Aerossóis , Animais , Relação Dose-Resposta a Droga , Cobaias , Longevidade/efeitos dos fármacos , Pneumopatias/induzido quimicamente , Masculino
15.
Inhal Toxicol ; 19(3): 291-302, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17365032

RESUMO

Exposure to a chemical warfare nerve agent (CWNA) leads to severe respiratory distress, respiratory failure, or death if not treated. We investigated the toxic effects of nerve agent VX on the respiratory dynamics of guinea pigs following exposure to 90.4 mug/m3 of VX or saline by microinstillation inhalation technology for 10 min. Respiratory parameters were monitored by whole-body barometric plethysmography at 4, 24, and 48 h, 7 d, 18 d, and 4 wk after VX exposure. VX-exposed animals showed a significant decrease in the respiratory frequency (RF) at 24 and 48 h of recovery (p value .0329 and .0142, respectively) compared to the saline control. The tidal volume (TV) slightly increased in VX exposed animals at 24 and significantly at 48 h (p = .02) postexposure. Minute ventilation (MV) increased slightly at 4 h but was reduced at 24 h and remained unchanged at 48 h. Animals exposed to VX also showed an increase in expiratory (Te) and relaxation time (RT) at 24 and 48 h and a small reduction in inspiratory time (Ti) at 24 h. A significant increase in end expiratory pause (EEP) was observed at 48 h after VX exposure (p = .049). The pseudo lung resistance (Penh) was significantly increased at 4 h after VX exposure and remained slightly high even at 48 h. Time-course studies reveal that most of the altered respiratory dynamics returned to normal at 7 d after VX exposure except for EEP, which was high at 7 d and returned to normal at 18 d postexposure. After 1 mo, all the monitored respiratory parameters were within normal ranges. Bronchoalveolar lavage (BAL) 1 mo after exposure showed virtually no difference in protein levels, cholinesterase levels, cell number, and cell death in the exposed and control animals. These results indicate that sublethal concentrations of VX induce changes in respiratory dynamics and functions that over time return to normal levels.


Assuntos
Substâncias para a Guerra Química/toxicidade , Exposição por Inalação , Pulmão/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Animais , Cobaias , Pulmão/fisiologia , Masculino , Pico do Fluxo Expiratório/efeitos dos fármacos , Pletismografia , Respiração/efeitos dos fármacos , Volume de Ventilação Pulmonar/efeitos dos fármacos
16.
Inhal Toxicol ; 18(6): 437-48, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16556583

RESUMO

A microinstillation technique of inhalation exposure was utilized to assess lung injury following chemical warfare nerve agent VX [methylphosphonothioic acid S-(2-[bis(1-methylethyl)amino]ethyl) O-ethyl ester] exposure in guinea pigs. Animals were anesthetized using Telazol-meditomidine, gently intubated, and VX was aerosolized using a microcatheter placed 2 cm above the bifurcation of the trachea. Different doses (50.4 microg/m3, 70.4 micro g/m(m3), 90.4 microg/m(m3)) of VX were administered at 40 pulses/min for 5 min. Dosing of VX was calculated by the volume of aerosol produced per 200 pulses and diluting the agent accordingly. Although the survival rate of animals exposed to different doses of VX was similar to the controls, nearly a 20% weight reduction was observed in exposed animals. After 24 h of recovery, the animals were euthanized and bronchoalveolar lavage (BAL) was performed with oxygen free saline. BAL was centrifuged and separated into BAL fluid (BALF) and BAL cells (BALC) and analyzed for indication of lung injury. The edema by dry/wet weight ratio of the accessory lobe increased 11% in VX-treated animals. BAL cell number was increased in VX-treated animals compared to controls, independent of dosage. Trypan blue viability assay indicated an increase in BAL cell death in 70.4 microg/m(m3) and 90.4 microg/m(m3) VX-exposed animals. Differential cell counting of BALC indicated a decrease in macrophage/monocytes in VX-exposed animals. The total amount of BAL protein increased gradually with the exposed dose of VX and was highest in animals exposed to 90.4 microg/m(m3), indicating that this dose of VX caused lung injury that persisted at 24 h. In addition, histopathology results also suggest that inhalation exposure to VX induces acute lung injury.


Assuntos
Substâncias para a Guerra Química/toxicidade , Exposição por Inalação , Pulmão/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Acetilcolinesterase/sangue , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Butirilcolinesterase/sangue , Contagem de Células , Citometria de Fluxo , Cobaias , Pulmão/patologia , Linfócitos/efeitos dos fármacos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Proteínas/análise , Redução de Peso/efeitos dos fármacos
17.
Inhal Toxicol ; 18(7): 493-500, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16603480

RESUMO

Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Butirilcolinesterase/metabolismo , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Exposição por Inalação , Pulmão/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Acetilcolinesterase/metabolismo , Animais , Biomarcadores , Feminino , Cobaias , Pulmão/enzimologia , Masculino , Compostos Organotiofosforados/administração & dosagem
18.
Toxicol Mech Methods ; 16(6): 295-306, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-20021028

RESUMO

Respiratory disturbances due to chemical warfare nerve agents (CWNAs) are the starting point of mass casualty and the primary cause of death by these weapons of terror and mass destruction. However, very few studies have been implemented to assess respiratory toxicity and exacerbation induced by CWNAs, especially methylphosphonothioic acid S-(2-(bis(1-methylethyl)amino)ethyl)O-ethyl ester (VX). In this study, we developed a microinstillation technique of inhalation exposure to assess lung injury following exposure to CWNAs and toxic chemicals. Guinea pigs were gently intubated by placing a microcatheter into the trachea 1.5 to 2.0 cm centrally above the bifurcation. This location is crucial to deliver aerosolized agents uniformly to the lung's lobes. The placement of the tube is calculated by measuring the distance from the upper front teeth to the tracheal bifurcation, which is typically 8.5 cm for guinea pigs of equivalent size and a weight range of 250 g to 300 g. The catheter is capable of withstanding 100 psi pressure; the terminus has five peripheral holes to pump air that aerosolizes the nerve agent that is delivered in the central hole. The microcatheter is regulated by a central control system to deliver the aerosolized agent in a volume lower than the tidal volume of the guinea pigs. The average particle size of the nerve agent delivered was 1.48 +/- 0.07 micrometer. The microinstillation technology has been validated by exposing the animals to Coomassie brilliant blue, which showed a uniform distribution of the dye in different lung lobes. In addition, the concentration of the dye in the lungs correlated with the dose/time of exposure. Furthermore, histopathological analysis confirmed the absence of barotraumas following micoinstillation. This novel technique delivers the agent safely, requires less amount of agent, avoids exposure to skin, pelt, and eye, and circumvents the concern of deposition of the particles in the nasal and palette due to the switching of breathing from nasal to oronasal in whole-body dynamic chamber or nose only exposure. Currently, we are using this inhalation exposure technique to investigate lung injuries and respiratory disturbances following direct exposure to VX.

19.
Chem Biol Interact ; 157-158: 239-46, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16256090

RESUMO

Cholinesterases (ChEs) are classified as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) according to their substrate specificity and sensitivity to selected inhibitors. The activities of AChE in red blood cells (RBC-AChE) and BChE in serum can be used as potential biomarkers of suppressed and/or heightened activity in the central and peripheral nervous systems. Exposure to organophosphate (OP) chemical warfare agents (CWAs), pesticides, anesthetics, and a variety of drugs such as cocaine, as well as some neurodegenerative and liver disease states, selectively reduces AChE or BChE activity. In humans, the toxicity of pesticides is well documented. Therefore, blood cholinesterase activity can be exploited as a tool for confirming exposure to these agents and possible treatments. Current assays for measurement of RBC-AChE and serum BChE require several labor-intensive processing steps, suffer from wide statistical variation, and there is no inter-laboratory conversion between methods. These methods, which determine only the serum BChE or RBC-AChE but not both, include the Ellman, radiometric, and deltapH (modified Michel) methods. In contrast, the Walter Reed Army Institute of Research Whole Blood (WRAIR WB, US Patent #6,746,850) cholinesterase assay rapidly determines the activity of both AChE and BChE in unprocessed (uncentrifuged) whole blood, uses a minimally invasive blood sampling technique (e.g., blood from a finger prick), and is semi-automated for high-throughput using the Biomek 2000 robotic system. To date, the WRAIR whole blood assay was used to measure AChE and BChE activities in human blood from volunteers in FDA clinical trials. In the first FDA study, 24 human subjects were given either 30 mg PB orally (n = 19) or placebo (n = 5). Blood samples were obtained pre-dosing and 2.5, 5, 8, and 24 h post-dosing. The samples were analyzed for AChE and BChE activity using the WRAIR WB robotic system, and for PB concentration by HPLC. We found that maximal inhibition of AChE (26.2%) and concentration of PB (17.1 ng/mL) occurred at 2.5 h post-PB dosing. AChE activity returned to almost 100% of pre-dose values by 6 h. A dose-dependent linear correlation was found between the amount of PB measured in the blood and the inhibition of AChE. Following soman (GD) exposure, recovered AChE activity was similar to levels that were reversibly protected by the PB administration. Therefore, the WRAIR ChE WB data clearly supports the conclusion that PB is an effective pre-treatment drug for nerve agent exposure (GD). In the second FDA human study for the treatment of Alzheimer's disease, the WRAIR ChE WB assay was used to determine the RBC-AChE and serum BChE profile of healthy elderly volunteers receiving Huperzine A. Huperzine A is a plant-derived reversible and selective AChE inhibitor compared to BChE, and is a more potent inhibitor of AChE than PB. Huperzine A is available as a nutraceutical, a natural supplement reported to improve memory, and has a variety of neuroprotective effects. Individuals received an increasing dose regimen of huperzine A (final dose 200 microg after 4 weeks), which produced more than 50% inhibition of RBC-AChE. Huperzine A was well tolerated by these patients at doses that sequestered more RBC-AChE than PB, and thus warrants further study as a prophylaxis for OP poisoning in addition to Alzheimer's therapy. Due to the documented use of OPs by terrorists and in warfare around the globe, Federal, State, and local authorities need a reliable, fast, inexpensive, and standard method for confirming such an assault in order to initiate appropriate containment, decontamination, and treatment measures. This assay is ideal for prescreening military personnel for atypical ChE activities that would preclude their deployment to areas of potential CWA exposure. The WRAIR WB ChE assay will fulfill the requirement for rapid and reliable monitoring of such exposure in military and civilian populations.


Assuntos
Colinesterases/sangue , Fármacos Neuroprotetores/farmacologia , Brometo de Piridostigmina/administração & dosagem , Brometo de Piridostigmina/farmacologia , Sesquiterpenos/administração & dosagem , Sesquiterpenos/farmacologia , Soman/farmacologia , Administração Oral , Alcaloides , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacologia , Colinesterases/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Humanos , Fármacos Neuroprotetores/administração & dosagem , Brometo de Piridostigmina/farmacocinética , Sesquiterpenos/farmacocinética
20.
Physiol Behav ; 138: 165-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25455867

RESUMO

INTRODUCTION: Based on common pharmacodynamic mechanisms, recent efforts to develop second generation alternatives for organophosphate (OP) prophylaxis have expanded to include cholinesterase (ChE) inhibiting compounds traditionally approved for use in the treatment of Alzheimer's disease (AD). The primary purpose of this study was to determine the extent to which low-dose huperzine A, galantamine, or donepezil selectively inhibited acetylcholinesterase (AChE) versus butyrylcholinesterase (BChE) activity in healthy adults and whether such inhibition impacted neurobehavioral performance. METHODS: In addition to hourly red blood cell cholinesterase sampling, neurobehavioral function was assessed before and after a single oral dose of huperzine A (100 or 200 µg), galantamine (4 or 8 mg), donepezil (2.5 or 5mg), or placebo (n=12 subjects per drug/dose). RESULTS: Compared to placebo, both dosages of huperzine A and galantamine inhibited circulating AChE but not BChE. With the exception of huperzine A (200 µg), which maintained declarative recall performance across sessions, compounds did not improve neurobehavioral performance. Some aspects of neurobehavioral performance correlated with AChE activity, although associations may have reflected time of day effects. DISCUSSION: Although huperzine A and galantamine significantly inhibited AChE (and likely increased central acetylcholine levels), neither compound improved neurobehavioral performance. The latter was likely due to ceiling effects in this young, healthy test population. Under conditions of reduced cholinergic activity (e.g., Alzheimer's disease), AChE inhibition (and corresponding maintenance of cholinergic tone) could potentially maintain/augment some aspects of neurobehavioral function.


Assuntos
Inibidores da Colinesterase/farmacologia , Colinesterases/sangue , Memória/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Acetilcolinesterase/sangue , Adolescente , Adulto , Alcaloides/farmacologia , Butirilcolinesterase/sangue , Donepezila , Feminino , Galantamina/farmacologia , Humanos , Indanos/farmacologia , Masculino , Memória/fisiologia , Piperidinas/farmacologia , Tempo de Reação/fisiologia , Sesquiterpenos/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA