Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(4): 648-659.e8, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667383

RESUMO

Loss of lymphocytes, particularly T cell apoptosis, is a central pathological event after severe tissue injury that is associated with increased susceptibility for life-threatening infections. The precise immunological mechanisms leading to T cell death after acute injury are largely unknown. Here, we identified a monocyte-T cell interaction driving bystander cell death of T cells in ischemic stroke and burn injury. Specifically, we found that stroke induced a FasL-expressing monocyte population, which led to extrinsic T cell apoptosis. This phenomenon was driven by AIM2 inflammasome-dependent interleukin-1ß (IL-1ß) secretion after sensing cell-free DNA. Pharmacological inhibition of this pathway improved T cell survival and reduced post-stroke bacterial infections. As such, this study describes inflammasome-dependent monocyte activation as a previously unstudied cause of T cell death after injury and challenges the current paradigms of post-injury lymphopenia.


Assuntos
Coinfecção/imunologia , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica/imunologia , Inflamassomos/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Infecções Bacterianas/imunologia , Queimaduras/imunologia , Queimaduras/microbiologia , Coinfecção/microbiologia , Humanos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/microbiologia , Linfócitos T/imunologia
2.
RNA ; 30(4): 418-434, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38302256

RESUMO

3' untranslated regions (3' UTRs) are critical elements of messenger RNAs, as they contain binding sites for RNA-binding proteins (RBPs) and microRNAs that affect various aspects of the RNA life cycle including transcript stability and cellular localization. In response to T cell receptor activation, T cells undergo massive expansion during the effector phase of the immune response and dynamically modify their 3' UTRs. Whether this serves to directly regulate the abundance of specific mRNAs or is a secondary effect of proliferation remains unclear. To study 3'-UTR dynamics in T helper cells, we investigated division-dependent alternative polyadenylation (APA). In addition, we generated 3' end UTR sequencing data from naive, activated, memory, and regulatory CD4+ T cells. 3'-UTR length changes were estimated using a nonnegative matrix factorization approach and were compared with those inferred from long-read PacBio sequencing. We found that APA events were transient and reverted after effector phase expansion. Using an orthogonal bulk RNA-seq data set, we did not find evidence of APA association with differential gene expression or transcript usage, indicating that APA has only a marginal effect on transcript abundance. 3'-UTR sequence analysis revealed conserved binding sites for T cell-relevant microRNAs and RBPs in the alternative 3' UTRs. These results indicate that poly(A) site usage could play an important role in the control of cell fate decisions and homeostasis.


Assuntos
MicroRNAs , Poliadenilação , Regiões 3' não Traduzidas , MicroRNAs/genética , MicroRNAs/metabolismo , RNA-Seq , RNA Mensageiro/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579180

RESUMO

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Assuntos
Diabetes Mellitus Tipo 2 , Naftoquinonas , Humanos , Trifosfato de Adenosina , Linhagem Celular Tumoral , Difosfatos , Peróxido de Hidrogênio/metabolismo , Inositol , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/farmacologia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
4.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458801

RESUMO

Aberrant angiogenesis is a hallmark of cardiovascular and retinal neovascular disease. The STAT3 signaling pathway represents a potential pharmacological target for these diseases due to its impact on angiogenesis. Surprisingly, some STAT3 activators, such as the IL-6 cytokine family member oncostatin M (OSM), enhance angiogenesis, whereas others, such as ciliary neurotropic factor (CNTF), reduce it. This study aimed to clarify these conflicting effects. In contrast to the anti-angiogenic cytokine CNTF, the pro-angiogenic cytokine OSM was able to activate intracellular signaling pathways beyond the STAT3 pathway, including the ERK and AKT pathways. These differences translated into transcriptomic and metabolic shifts. siRNA-mediated STAT3 knockdown experiments showed a decrease in VEGF-induced endothelial migration and sprouting, enhancing the pro-angiogenic drive of OSM and switching the CNTF response from anti-angiogenic to pro-angiogenic. These effects correlated with a transcriptomic shift representing enhanced STAT1 and ERK activity following STAT3 knockdown, including a compensatory prolonged phosphorylated STAT1 activity. In conclusion, the angiogenic effect of STAT3 appears to be determined by cytokine-induced STAT3 specificity and simultaneous activity of other intracellular signaling pathways, whereas the STAT3 pathway, predominantly recognized for its pro-angiogenic phenotypes, reveals novel anti-angiogenic potential.


Assuntos
Citocinas , Interleucina-6 , Citocinas/metabolismo , Interleucina-6/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo
5.
Immunity ; 45(4): 761-773, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27692612

RESUMO

Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K+ efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K+ efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant.


Assuntos
Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , RNA Nuclear Pequeno/farmacologia , Animais , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , Quinases Relacionadas a NIMA/metabolismo , Quinona Redutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 7 Toll-Like/metabolismo
6.
Immunity ; 45(5): 1148-1161, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851915

RESUMO

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA+ CD4+ Tmem cells from blood and CD69+ Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation. Furthermore, distinct gradually changing signatures in the epigenome and the transcriptome supported a linear model of memory development in circulating T cells, while tissue-resident BM-Tmem branched off with a unique epigenetic profile. Integrative analyses identified candidate master regulators of Tmem cell differentiation, including the transcription factor FOXP1. This study highlights the importance of epigenomic changes for Tmem cell biology and demonstrates the value of epigenetic data for the identification of lineage regulators.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Epigênese Genética/imunologia , Epigenômica/métodos , Memória Imunológica/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase , Transcriptoma
7.
Gut ; 72(10): 1971-1984, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541771

RESUMO

OBJECTIVE: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. DESIGN: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. RESULTS: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. CONCLUSION: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies.


Assuntos
Hepatite B Crônica , Hepatite C Crônica , Hepatite C , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Antivirais/uso terapêutico , Infecção Persistente , Hepatite C Crônica/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/metabolismo , Hepatite C/tratamento farmacológico , Vírus de Hepatite , Vírus da Hepatite B
8.
FASEB J ; 35(11): e21956, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605573

RESUMO

MicroRNAs are key regulators of the cardiac response to injury. MiR-100 has recently been suggested to be involved in different forms of heart failure, but functional studies are lacking. In the present study, we examined the impact of transgenic miR-100 overexpression on cardiac structure and function during physiological aging and pathological pressure-overload-induced heart failure in mice after transverse aortic constriction surgery. MiR-100 was moderately upregulated after induction of pressure overload in mice. While in our transgenic model the cardiomyocyte-specific overexpression of miR-100 did not result in an obvious cardiac phenotype in unchallenged mice, the transgenic mouse strain exhibited less left ventricular dilatation and a higher ejection fraction than wildtype animals, demonstrating an attenuation of maladaptive cardiac remodeling by miR-100. Cardiac transcriptome analysis identified a repression of several regulatory genes related to cardiac metabolism, lipid peroxidation, and production of reactive oxygen species (ROS) by miR-100 overexpression, possibly mediating the observed functional effects. While the modulation of ROS-production seemed to be indirectly affected by miR-100 via Alox5-and Nox4-downregulation, we demonstrated that miR-100 induced a direct repression of the scavenger protein CD36 in murine hearts resulting in a decreased uptake of long-chain fatty acids and an alteration of mitochondrial respiratory function with an enhanced glycolytic state. In summary, we identified miR-100 as a modulator of cardiac metabolism and ROS production without an apparent cardiac phenotype at baseline but a protective effect under conditions of pressure-overload-induced cardiac stress, providing new insight into the mechanisms of heart failure.


Assuntos
Antígenos CD36/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Animais , Antígenos CD36/genética , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , NADPH Oxidase 4/genética , Ratos , Volume Sistólico/genética , Transfecção , Remodelação Ventricular/genética
9.
Proc Natl Acad Sci U S A ; 115(12): 3120-3125, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507226

RESUMO

The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1 Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma.


Assuntos
Linfócitos B/classificação , Linfócitos B/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Repressoras/metabolismo , Animais , Anticorpos/metabolismo , Antígenos CD19/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Proteínas Repressoras/genética , Linfócitos T/fisiologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
11.
PLoS Biol ; 11(10): e1001674, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24115907

RESUMO

TGF-ß is widely held to be critical for the maintenance and function of regulatory T (T(reg)) cells and thus peripheral tolerance. This is highlighted by constitutive ablation of TGF-ß receptor (TR) during thymic development in mice, which leads to a lethal autoimmune syndrome. Here we describe that TGF-ß-driven peripheral tolerance is not regulated by TGF-ß signalling on mature CD4⁺ T cells. Inducible TR2 ablation specifically on CD4⁺ T cells did not result in a lethal autoinflammation. Transfer of these TR2-deficient CD4⁺ T cells to lymphopenic recipients resulted in colitis, but not overt autoimmunity. In contrast, thymic ablation of TR2 in combination with lymphopenia led to lethal multi-organ inflammation. Interestingly, deletion of TR2 on mature CD4⁺ T cells does not result in the collapse of the T(reg) cell population as observed in constitutive models. Instead, a pronounced enlargement of both regulatory and effector memory T cell pools was observed. This expansion is cell-intrinsic and seems to be caused by increased T cell receptor sensitivity independently of common gamma chain-dependent cytokine signals. The expression of Foxp3 and other regulatory T cells markers was not dependent on TGF-ß signalling and the TR2-deficient T(reg) cells retained their suppressive function both in vitro and in vivo. In summary, absence of TGF-ß signalling on mature CD4⁺ T cells is not responsible for breakdown of peripheral tolerance, but rather controls homeostasis of mature T cells in adult mice.


Assuntos
Homeostase/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Proliferação de Células/efeitos dos fármacos , Colite/patologia , Deleção de Genes , Homeostase/efeitos dos fármacos , Inflamação/patologia , Integrases/metabolismo , Linfopenia/imunologia , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Receptores de Antígenos de Linfócitos T/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Tamoxifeno/farmacologia , Timo/efeitos dos fármacos , Timo/crescimento & desenvolvimento , Timo/patologia
12.
J Allergy Clin Immunol ; 132(1): 151-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727036

RESUMO

BACKGROUND: Combined immunodeficiency (CID) is characterized by severe recurrent infections with normal numbers of T and B lymphocytes but with deficient cellular and humoral immunity. Most cases are sporadic, but autosomal recessive inheritance has been described. In most cases, the cause of CID remains unknown. OBJECTIVE: We wanted to identify the genetic cause of CID in 2 siblings, the products of a first-cousin marriage, who experienced recurrent bacterial and candidal infections with bronchiectasis, growth delay, and early death. METHODS: We performed immunologic, genetic, and biochemical studies in the 2 siblings, their family members, and healthy controls. Reconstitution studies were performed with T cells from mucosa-associated lymphoid tissue lymphoma-translocation gene 1-deficient (Malt1(-/-)) mice. RESULTS: The numbers of circulating T and B lymphocytes were normal, but T-cell proliferation to antigens and antibody responses to vaccination were severely impaired in both patients. Whole genome sequencing of 1 patient and her parents, followed by DNA sequencing of family members and healthy controls, showed the presence in both patients of a homozygous missense mutation in MALT1 that resulted in loss of protein expression. Analysis of T cells that were available on one of the patients showed severely impaired IκBα degradation and IL-2 production after activation, 2 events that depend on MALT1. In contrast to wild-type human MALT1, the patients' MALT1 mutant failed to correct defective nuclear factor-κB activation and IL-2 production in MALT1-deficient mouse T cells. CONCLUSIONS: An autosomal recessive form of CID is associated with homozygous mutations in MALT1. If future patients are found to be similarly affected, they should be considered as candidates for allogeneic hematopoietic cell transplantation.


Assuntos
Caspases/genética , Mutação , Proteínas de Neoplasias/genética , Imunodeficiência Combinada Severa/genética , Sequência de Aminoácidos , Animais , Caspases/análise , Células Cultivadas , Criança , Pré-Escolar , Humanos , Quinase I-kappa B/metabolismo , Ativação Linfocitária , Dados de Sequência Molecular , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Proteínas de Neoplasias/análise , Imunodeficiência Combinada Severa/imunologia , Linfócitos T/metabolismo
13.
Bioact Mater ; 41: 537-552, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39246837

RESUMO

Photoimmunotherapy (PIT) combines the specificity of antibodies with the cytotoxicity of light activatable photosensitizers (PS) and is a promising new cancer therapy. We designed and synthesized, in a highly convergent manner, the silicon phthalocyanine dye WB692-CB2, which is novel for being the first light-activatable PS that can be directly conjugated via a maleimide linker to cysteines. In the present study we conjugated WB692-CB2 to a humanized antibody with engineered cysteines in the heavy chains that specifically targets the prostate-specific membrane antigen (PSMA). The resulting antibody dye conjugate revealed high affinity and specificity towards PSMA-expressing prostate cancer cells and induced cell death after irradiation with red light. Treated cells exhibited morphological characteristics associated with pyroptosis. Mechanistic studies revealed the generation of reactive oxygen species, triggering a cascade of intracellular events involving lipid peroxidation, caspase-1 activation, gasdermin D cleavage and membrane rupture followed by release of pro-inflammatory cellular contents. In first in vivo experiments, PIT with our antibody dye conjugate led to a significant reduction of tumor growth and enhanced overall survival in mice bearing subcutaneous prostate tumor xenografts. Our study highlights the future potential of the new phthalocyanine dye WB692-CB2 as PS for the fluorescence-based detection and PIT of cancer, including local prostate tumor lesions, and systemic activation of anti-tumor immune responses by the induction of pyroptosis.

14.
Antioxidants (Basel) ; 13(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247505

RESUMO

(1) Background: Differentiated podocytes are particularly vulnerable to oxidative stress and cellular waste products. The disease-related loss of postmitotic podocytes is a direct indicator of renal disease progression and aging. Podocytes use highly specific regulated networks of autophagy and endocytosis that counteract the increasing number of damaged protein aggregates and help maintain cellular homeostasis. Here, we demonstrate that ARFIP2 is a regulator of autophagy and mitophagy in podocytes both in vitro and in vivo. (2) Methods: In a recent molecular regulatory network analysis of mouse glomeruli, we identified ADP-ribosylation factor-interacting protein 2 (Arfip2), a cytoskeletal regulator and cofactor of ATG9-mediated autophagosome formation, to be differentially expressed with age. We generated an Arfip2-deficient immortalized podocyte cell line using the CRISPR/Cas technique to investigate the significance of Arfip2 for renal homeostasis in vitro. For the in vivo analyses of Arfip2 deficiency, we used a mouse model of Streptozotozin-induced type I diabetes and investigated physiological data and (patho)histological (ultra)structural modifications. (3) Results: ARFIP2 deficiency in immortalized human podocytes impedes autophagy. Beyond this, ARFIP2 deficiency in human podocytes interferes with ATG9A trafficking and the PINK1-Parkin pathway, leading to the compromised fission of mitochondria and short-term increase in mitochondrial respiration and induction of mitophagy. In diabetic mice, Arfip2 deficiency deteriorates autophagy and leads to foot process effacement, histopathological changes, and early albuminuria. (4) Conclusions: In summary, we show that ARFIP2 is a novel regulator of autophagy and mitochondrial homeostasis in podocytes by facilitating ATG9A trafficking during PINK1/Parkin-regulated mitophagy.

15.
Environ Pollut ; 341: 122997, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38000727

RESUMO

Exposure to air pollution fine particulate matter (PM2.5) aggravates respiratory and cardiovascular diseases. It has been proposed that PM2.5 uptake by alveolar macrophages promotes local inflammation that ignites a systemic response, but precise underlying mechanisms remain unclear. Here, we demonstrate that PM2.5 phagocytosis leads to NLRP3 inflammasome activation and subsequent release of the pro-inflammatory master cytokine IL-1ß. Inflammasome priming and assembly was time- and dose-dependent in inflammasome-reporter THP-1-ASC-GFP cells, and consistent across PM2.5 samples of variable chemical composition. While inflammasome activation was promoted by different PM2.5 surrogates, significant IL-1ß release could only be observed after stimulation with transition-metal rich Residual Oil Fly Ash (ROFA) particles. This effect was confirmed in primary human monocyte-derived macrophages and murine bone marrow-derived macrophages (BMDMs), and by confocal imaging of inflammasome-reporter ASC-Citrine BMDMs. IL-1ß release by ROFA was dependent on the NLRP3 inflammasome, as indicated by lack of IL-1ß production in ROFA-exposed NLRP3-deficient (Nlrp3-/-) BMDMs, and by specific NLRP3 inhibition with the pharmacological compound MCC950. In addition, while ROFA promoted the upregulation of pro-inflammatory gene expression and cytokines release, MCC950 reduced TNF-α, IL-6, and CCL2 production. Furthermore, inhibition of TNF-α with a neutralizing antibody decreased IL-1ß release in ROFA-exposed BMDMs. Using electron tomography, ROFA particles were observed inside intracellular vesicles and mitochondria, which showed signs of ultrastructural damage. Mechanistically, we identified lysosomal rupture, K+ efflux, and impaired mitochondrial function as important prerequisites for ROFA-mediated IL-1ß release. Interestingly, specific inhibition of superoxide anion production (O2•-) from mitochondrial respiratory Complex I, but not III, blunted IL-1ß release in ROFA-exposed BMDMs. Our findings unravel the mechanism by which PM2.5 promotes IL-1ß release in macrophages and provide a novel link between innate immune response and exposure to air pollution PM2.5.


Assuntos
Poluição do Ar , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Material Particulado/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Cinza de Carvão/farmacologia
16.
Sci Immunol ; 8(86): eadg3517, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37566679

RESUMO

The skin needs to balance tolerance of colonizing microflora with rapid detection of potential pathogens. Flexible response mechanisms would seem most suitable to accommodate the dynamic challenges of effective antimicrobial defense and restoration of tissue homeostasis. Here, we dissected macrophage-intrinsic mechanisms and microenvironmental cues that tune macrophage signaling in localized skin infection with the colonizing and opportunistic pathogen Staphylococcus aureus. Early in skin infection, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) produced by γδ T cells and hypoxic conditions within the dermal microenvironment diverted macrophages away from a homeostatic M-CSF- and hypoxia-inducible factor 1α (HIF-1α)-dependent program. This allowed macrophages to be metabolically rewired for maximal inflammatory activity, which requires expression of Irg1 and generation of itaconate, but not HIF-1α. This multifactorial macrophage rewiring program was required for both the timely clearance of bacteria and for the provision of local immune memory. These findings indicate that immunometabolic conditioning allows dermal macrophages to cycle between antimicrobial activity and protection against secondary infections.


Assuntos
Macrófagos , Infecções Cutâneas Estafilocócicas , Humanos , Citocinas/metabolismo , Transdução de Sinais , Infecções Cutâneas Estafilocócicas/metabolismo
17.
Sci Signal ; 16(768): eabh1083, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36649377

RESUMO

Inflammasomes are intracellular protein complexes that promote an inflammatory host defense in response to pathogens and damaged or neoplastic tissues and are implicated in inflammatory disorders and therapeutic-induced toxicity. We investigated the mechanisms of activation for inflammasomes nucleated by NOD-like receptor (NLR) protiens. A screen of a small-molecule library revealed that several tyrosine kinase inhibitors (TKIs)-including those that are clinically approved (such as imatinib and crizotinib) or are in clinical trials (such as masitinib)-activated the NLRP3 inflammasome. Furthermore, imatinib and masitinib caused lysosomal swelling and damage independently of their kinase target, leading to cathepsin-mediated destabilization of myeloid cell membranes and, ultimately, cell lysis that was accompanied by potassium (K+) efflux, which activated NLRP3. This effect was specific to primary myeloid cells (such as peripheral blood mononuclear cells and mouse bone marrow-derived dendritic cells) and did not occur in other primary cell types or various cell lines. TKI-induced lytic cell death and NLRP3 activation, but not lysosomal damage, were prevented by stabilizing cell membranes. Our findings reveal a potential immunological off-target of some TKIs that may contribute to their clinical efficacy or to their adverse effects.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mesilato de Imatinib , Leucócitos Mononucleares/metabolismo , Morte Celular , Células Mieloides/metabolismo , Interleucina-1beta/metabolismo
18.
Cancer Gene Ther ; 29(11): 1751-1760, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35794338

RESUMO

B-cell precursor acute lymphoblastic leukemias (B-ALL) are characterized by the activation of signaling pathways, which are involved in survival and proliferation of leukemia cells. Using an unbiased shRNA library screen enriched for targeting signaling pathways, we identified MTOR as the key gene on which human B-ALL E2A-PBX1+ RCH-ACV cells are dependent. Using genetic and pharmacologic approaches, we investigated whether B-ALL cells depend on MTOR upstream signaling pathways including PI3K/AKT and the complexes MTORC1 or MTORC2 for proliferation and survival in vitro and in vivo. Notably, the combined inhibition of MTOR and AKT shows a synergistic effect on decreased cell proliferation in B-ALL with different karyotypes. Hence, B-ALL cells were more dependent on MTORC2 rather than MTORC1 complex in genetic assays. Using cell metabolomics, we identified changes in mitochondrial fuel oxidation after shRNA-mediated knockdown or pharmacological inhibition of MTOR. Dependence of the cells on fatty acid metabolism for their energy production was increased upon inhibition of MTOR and associated upstream signaling pathways, disclosing a possible target for a combination therapy. In conclusion, B-ALL are dependent on the PI3K/AKT/MTOR signaling pathway and the combination of specific small molecules targeting this pathway appears to be promising for the treatment of B-ALL patients.


Assuntos
Fosfatidilinositol 3-Quinases , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , RNA Interferente Pequeno , Transdução de Sinais , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proliferação de Células , Linhagem Celular Tumoral
19.
Cell Rep Methods ; 2(8): 100260, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046625

RESUMO

Tissue-resident macrophages (TRMs) perform organ-specific functions that are dependent on factors such as hematopoietic origin, local environment, and biological influences. A diverse range of in vitro culture systems have been developed to decipher TRM functions, including bone marrow-derived macrophages (BMDMs), induced pluripotent stem cell (iPSC)-derived TRMs, or immortalized cell lines. However, despite the usefulness of such systems, there are notable limitations. Attempts to culture primary macrophages often require purification of cells and lack a high cell yield and consistent phenotype. Here, we aimed to address these limitations by establishing an organotypic primary cell culture protocol. We obtained long-term monocultures of macrophages derived from distinct organs without prior purification using specific growth factors and tissue normoxic conditions that largely conserved a TRM-like identity in vitro. Thus, this organotypic system offers an ideal screening platform for primary macrophages from different organs that can be used for a wide range of assays and readouts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Sistemas Microfisiológicos , Diferenciação Celular/genética , Macrófagos , Histiócitos
20.
Curr Opin Biotechnol ; 68: 300-309, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33862489

RESUMO

The NLRP3 inflammasome is an important player in innate immunity and pathogenic inflammation. Numerous studies have implicated it in sensing endogenous danger signals, yet the precise mechanisms remain unknown. Here, we review the current knowledge on the organismal and cellular metabolic triggers engaging NLRP3, and the mechanisms involved in integrating the diverse signals.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Imunidade Inata , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA