Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136550

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is a heterogenous disease that carries the poorest prognosis of all breast cancers. Although novel TNBC therapies in development are frequently targeted towards tumors carrying a specific genomic, transcriptomic, or protein biomarker, how these biomarkers are correlated is poorly understood. EXPERIMENTAL DESIGN: To better understand the molecular features of TNBC and their correlation with one another, we performed multi-modal profiling on a cohort of 95 TNBCs. Our approach involved quantifying tumor-infiltrating lymphocytes through H&E staining, assessing the abundance of retinoblastoma (Rb), androgen receptor (AR), and PD-L1 proteins through immunohistochemistry, and carrying out transcriptomic profiling using the Nanostring BC360 platform, targeted DNA sequencing on a subset of cases, as well as evaluating associations with overall survival. RESULTS: Levels of RB1 mRNA and RB protein are better correlated with markers of Rb functionality than is RB1 mutational status. Luminal AR tumors clustered into two groups with transcriptomes that cluster with either basal or mesenchymal tumors. Tumors classified as PD-L1-positive by presence of immune or tumor cells showed similar biological characteristics. HER2-low TNBC showed no distinct biological phenotype when compared to HER2-zero. The majority of TNBCs classified as basal or HER2-enriched by PAM50, the latter showing significantly improved overall survival. CONCLUSIONS: Our study contributes new insights into biomarker utility for identifying suitable TNBC therapies and the intercorrelations between genomic, transcriptomic, protein, and cellular biomarkers. Additionally, our rich data resource can be used by other researchers to explore the interplay between DNA, RNA, and protein biomarkers in TNBC.

2.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034597

RESUMO

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression towards severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

3.
iScience ; 26(8): 107374, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520727

RESUMO

The COVID-19 pandemic continues to be a health crisis with major unmet medical needs. The early responses from airway epithelial cells, the first target of the virus regulating the progression toward severe disease, are not fully understood. Primary human air-liquid interface cultures representing the broncho-alveolar epithelia were used to study the kinetics and dynamics of SARS-CoV-2 variants infection. The infection measured by nucleoprotein expression, was a late event appearing between day 4-6 post infection for Wuhan-like virus. Other variants demonstrated increasingly accelerated timelines of infection. All variants triggered similar transcriptional signatures, an "early" inflammatory/immune signature preceding a "late" type I/III IFN, but differences in the quality and kinetics were found, consistent with the timing of nucleoprotein expression. Response to virus was spatially organized: CSF3 expression in basal cells and CCL20 in apical cells. Thus, SARS-CoV-2 virus triggers specific responses modulated over time to engage different arms of immune response.

4.
iScience ; 24(10): 103205, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34608452

RESUMO

T cell exhaustion and dysfunction are hallmarks of severe COVID-19. To gain insights into the pathways underlying these alterations, we performed a comprehensive transcriptome analysis of peripheral-blood-mononuclear-cells (PBMCs), spleen, lung, kidney, liver, and heart obtained at autopsy from COVID-19 patients and matched controls, using the nCounter CAR-T-Characterization panel. We found substantial gene alterations in COVID-19-impacted organs, especially the lung where altered TCR repertoires are noted. Reduced TCR repertoires are also observed in PBMCs of severe COVID-19 patients. ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where expression positively correlates with markers of vasculopathy. Heightened ENTPD1/CD39 is paralleled by elevations in STAT-3 and HIF-1α transcription factors; and by markedly reduced CD39-antisense-RNA, a long-noncoding-RNA negatively regulating ENTPD1/CD39 at the post-transcriptional level. Limited TCR repertoire and aberrant regulation of ENTPD1/CD39 could have permissive roles in COVID-19 progression and indicate potential therapeutic targets to reverse disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA