Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499055

RESUMO

Stress-induced conditions are associated with impaired cerebral blood flow (CBF) and increased risk of dementia and stroke. However, these conditions do not develop in resilient humans and animals. Here the effects of predator stress (PS, cat urine scent, ten days) on CBF and mechanisms of CBF regulation were compared in PS-susceptible (PSs) and PS-resilient (PSr) rats. Fourteen days post-stress, the rats were segregated into PSs and PSr groups based on a behavior-related anxiety index (AI). CBF and its endothelium-dependent changes were measured in the parietal cortex by laser Doppler flowmetry. The major findings are: (1) PS susceptibility was associated with reduced basal CBF and endothelial dysfunction. In PSr rats, the basal CBF was higher, and endothelial dysfunction was attenuated. (2) CBF was inversely correlated with the AI of PS-exposed rats. (3) Endothelial dysfunction was associated with a decrease in eNOS mRNA in PSs rats compared to the PSr and control rats. (4) Brain dopamine was reduced in PSs rats and increased in PSr rats. (5) Plasma corticosterone of PSs was reduced compared to PSr and control rats. (6) A hypercoagulation state was present in PSs rats but not in PSr rats. Thus, potential stress resilience mechanisms that are protective for CBF were identified.


Assuntos
Encéfalo , Circulação Cerebrovascular , Humanos , Animais , Ratos , Fluxometria por Laser-Doppler , Dopamina/farmacologia , Corticosterona/farmacologia
2.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948031

RESUMO

BACKGROUND: Rats exposed to chronic predator scent stress mimic the phenotype of complex post-traumatic stress disorder (PTSD) in humans, including altered adrenal morphology and function. High- and low-anxiety phenotypes have been described in rats exposed to predator scent stress (PSS). This study aimed to determine whether these high- and low-anxiety phenotypes correlate with changes in adrenal histomorphology and corticosteroid production. METHODS: Rats were exposed to PSS for ten days. Thirty days later, the rats' anxiety index (AI) was assessed with an elevated plus-maze test. Based on differences in AI, the rats were segregated into low- (AI ≤ 0.8, n = 9) and high- (AI > 0.8, n = 10) anxiety phenotypes. Plasma corticosterone (CORT) concentrations were measured by ELISA. Adrenal CORT, desoxyCORT, and 11-dehydroCORT were measured by high-performance liquid chromatography. After staining with hematoxylin and eosin, adrenal histomorphometric changes were evaluated by measuring the thickness of the functional zones of the adrenal cortex. RESULTS: Decreased plasma CORT concentrations, as well as decreased adrenal CORT, desoxyCORT and 11-dehydroCORT concentrations, were observed in high- but not in low-anxiety phenotypes. These decreases were associated with increases in AI. PSS led to a significant decrease in the thickness of the zona fasciculata and an increase in the thickness of the zona intermedia. The increase in the thickness of the zona intermedia was more pronounced in low-anxiety than in high-anxiety rats. A decrease in the adrenal capsule thickness was observed only in low-anxiety rats. The nucleus diameter of cells in the zona fasciculata of high-anxiety rats was significantly smaller than that of control or low-anxiety rats. CONCLUSION: Phenotype-associated changes in adrenal function and histomorphology were observed in a rat model of complex post-traumatic stress disorder.


Assuntos
Glândulas Suprarrenais/fisiopatologia , Corticosterona/metabolismo , Transtornos de Estresse Pós-Traumáticos/patologia , Estresse Psicológico/complicações , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Animais , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Corticosterona/análogos & derivados , Corticosterona/sangue , Desoxicorticosterona/sangue , Desoxicorticosterona/metabolismo , Modelos Animais de Doenças , Fenótipo , Ratos , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Estresse Psicológico/metabolismo , Zona Fasciculada/metabolismo , Zona Fasciculada/patologia , Zona Fasciculada/fisiopatologia
3.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948051

RESUMO

Posttraumatic stress disorder (PTSD) causes mental and somatic diseases. Intermittent hypoxic conditioning (IHC) has cardio-, vaso-, and neuroprotective effects and alleviates experimental PTSD. IHC's ability to alleviate harmful PTSD effects on rat heart, liver, and brain was examined. PTSD was induced by 10-day exposure to cat urine scent (PTSD rats). Some rats were then adapted to 14-day IHC (PTSD+IHC rats), while PTSD and untreated control rats were cage rested. PTSD rats had a higher anxiety index (AI, X-maze test), than control or PTSD+IHC rats. This higher AI was associated with reduced glycogen content and histological signs of metabolic and hypoxic damage and of impaired contractility. The livers of PTSD rats had reduced glycogen content. Liver and blood alanine and aspartate aminotransferase activities of PTSD rats were significantly increased. PTSD rats had increased norepinephrine concentration and decreased monoamine oxidase A activity in cerebral cortex. The PTSD-induced elevation of carbonylated proteins and lipid peroxidation products in these organs reflects oxidative stress, a known cause of organ pathology. IHC alleviated PTSD-induced metabolic and structural injury and reduced oxidative stress. Therefore, IHC is a promising preventive treatment for PTSD-related morphological and functional damage to organs, due, in part, to IHC's reduction of oxidative stress.


Assuntos
Estresse Oxidativo , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/terapia , Alanina Transaminase/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Aspartato Aminotransferases/metabolismo , Escala de Avaliação Comportamental , Encéfalo/metabolismo , Gatos , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Glicogênio/metabolismo , Hipóxia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Aprendizagem em Labirinto , Monoaminoxidase/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Norepinefrina/metabolismo , Odorantes , Ratos , Ratos Wistar , Transtornos de Estresse Pós-Traumáticos/enzimologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Urina/química
4.
J Appl Physiol (1985) ; 130(3): 759-771, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411642

RESUMO

Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats. Fourteen days post-stress, rats were evaluated with an elevated plus-maze test, and assigned to PTSD and PTSDr groups according to an anxiety index calculated from the test results. Cardiac injury was evaluated by: 1) exercise tolerance; 2) ECG; 3) myocardial histomorphology; 4) oxidative stress; 5) pro- and anti-inflammatory cytokines. Myocardial heat shock protein 70 (HSP70) was also measured. Experimental PTSD developed in 40% of rats exposed to PS. Exercise tolerance of PTSD rats was 25% less than control rats and 21% less than PTSDr rats. ECG QRS, QT, and OTc intervals were significantly longer in PTSD rats than in control and PTSDr rats. Only cardiomyocytes of PTSD rats had histomorphological signs of metabolic and hypoxic injury and impaired contractility. Oxidative stress markers were higher in PTSD than in PTSDr rats. Pro-inflammatory IL-6 was higher in PTSD rats than in control and PTSDr rats, and anti-inflammatory IL-4 was lower in PTSD than in control and PTSDr rats. Myocardial HSP70 was lower in PTSD rats than in PTSDr and control rats. Our conclusion was that rats with PTSD developed multiple signs of cardiac injury. PTSDr rats were resistant also to cardiac injury. Factors that limit cardiac damage in PS rats include reduced inflammation and oxidative stress and increased protective HSP70.NEW & NOTEWORTHY For the first time, rats exposed to stress were segregated into experimental PTSD (ePTSD)-susceptible and ePTSD-resistant rats. Cardiac injury, ECG changes, and impaired exercise tolerance were more pronounced in ePTSD-susceptible rats. Resistance to ePTSD was associated with decreased inflammation and oxidative stress and with increased protective heat shock protein 70. Results may help identify individuals at high risk of PTSD and also provide a foundation for developing preventive and therapeutic means to restrict PTSD-associated cardiac morbidity.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Ansiedade , Inflamação/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Ratos
5.
Nitric Oxide ; 23(4): 289-99, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20804853

RESUMO

This study tested the hypothesis that adaptation to intermittent hypoxia (AIH) can prevent overproduction of nitric oxide (NO) in brain and neurodegeneration induced by beta-amyloid (Aß) toxicity. Rats were injected with a Aß protein fragment (25-35) into the nucleus basalis magnocellularis. AIH (simulated altitude of 4000 m, 14 days, 4h daily) was produced prior to the Aß injection. A passive, shock-avoidance, conditioned response test was used to evaluate memory function. Degenerating neurons were visualized in stained cortical sections. NO production was evaluated in brain tissue by the content of nitrite and nitrate. Expression of nNOS, iNOS, and eNOS was measured in the cortex and the hippocampus using Western blot analysis. 3-Nitrotyrosine formation, a marker of protein nitration, was quantified by slot blot analysis. Aß injection impaired memory of rats; AIH significantly alleviated this disorder. Histological examination confirmed the protective effect of AIH. Degenerating neurons, which were numerous in the cortex of Aß-injected, unadapted rats, were essentially absent in the brain of hypoxia-adapted rats. Injections of Aß resulted in significant increases in NOx and in expression of all NOS isoforms in brain; AIH blunted these increases. NO overproduction was associated with increased amounts of 3-nitrotyrosine in the cortex and hippocampus. AIH alone did not significantly influence tissue 3-nitrotyrosine, but significantly restricted its increase after the Aß injection. Therefore, AIH affords significant protection against experimental Alzheimer's disease, and this protection correlates with restricted NO overproduction.


Assuntos
Adaptação Fisiológica , Peptídeos beta-Amiloides/toxicidade , Encéfalo/efeitos dos fármacos , Hipóxia/metabolismo , Óxido Nítrico/biossíntese , Fragmentos de Peptídeos/toxicidade , Animais , Encéfalo/patologia , Masculino , Degeneração Neural/patologia , Nitratos/análise , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/metabolismo , Nitritos/análise , Ratos , Ratos Wistar
6.
J Appl Physiol (1985) ; 125(3): 931-937, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927732

RESUMO

Nonpharmacological treatments of stress-induced disorders are promising, since they enhance endogenous stress defense systems, are free of side effects, and have few contraindications. The present study tested the hypothesis that intermittent hypoxia conditioning (IHC) ameliorates behavioral, biochemical, and morphological signs of experimental posttraumatic stress disorder (PTSD) induced in rats with a model of predator stress (10-day exposure to cat urine scent, 15 min daily followed by 14 days of stress-free rest). After the last day of stress exposure, rats were conditioned in an altitude chamber for 14 days at a 1,000-m simulated altitude for 30 min on day 1 with altitude and duration progressively increasing to 4,000 m for 4 h on day 5. PTSD was associated with decreased time spent in open arms and increased time spent in closed arms of the elevated X-maze, increased anxiety index, and increased rate of freezing responses. Functional and structural signs of adrenal cortex degeneration were also observed, including decreased plasma concentration of corticosterone, decreased weight of adrenal glands, reduced thickness of the fasciculate zone, and hydropic degeneration of adrenal gland cells. The thickness of the adrenal fasciculate zone negatively correlated with the anxiety index. IHC alleviated both behavioral signs of PTSD and morphological evidence of adrenal cortex dystrophy. Also, IHC alone exerted an antistress effect, which was evident from the increased time spent in open arms of the elevated X-maze and a lower number of rats displaying freezing responses. Therefore, IHC of rats with experimental PTSD reduced behavioral signs of the condition and damage to the adrenal glands. NEW & NOTEWORTHY Intermittent hypoxia conditioning (IHC) has been shown to be cardio-, vaso-, and neuroprotective. For the first time, in a model of posttraumatic stress disorder (PTSD), this study showed that IHC alleviated both PTSD-induced behavioral disorders and functional and morphological damage to the adrenal glands. Also, IHC alone exerted an antistress effect. These results suggest that IHC may be a promising complementary treatment for PTSD-associated disorders.


Assuntos
Doenças das Glândulas Suprarrenais/terapia , Hipóxia/metabolismo , Hipóxia/psicologia , Condicionamento Físico Animal/fisiologia , Transtornos de Estresse Pós-Traumáticos/terapia , Córtex Suprarrenal/fisiopatologia , Doenças das Glândulas Suprarrenais/etiologia , Doenças das Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/patologia , Altitude , Animais , Ansiedade/psicologia , Corticosterona/sangue , Reação de Congelamento Cataléptica , Ratos , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/psicologia
7.
Exp Biol Med (Maywood) ; 239(5): 595-600, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24668553

RESUMO

Oligodendrocyte fusion with neurons in the brain cortex is a part of normal ontogenesis and is a possible means of neuroregeneration. Following such fusion, the oligodendrocyte nucleus undergoes neuron-specific reprogramming, resulting in the formation of binuclear neurons, which doubles the functional capability of the neuron. In this study, we tested the hypothesis that the formation of binuclear neurons is involved in long-term adaptation of the brain to intermittent hypobaric hypoxia, which is known to be neuroprotective. Rats were adapted to hypoxia in an altitude chamber at a simulated altitude of 4000 m above sea level for 14 days (30 min increasing to 4 h, daily). One micrometer sections of the left motor cortex were analyzed by light microscopy. Phases of the fusion and reprogramming process were recorded, and the number of binuclear neurons was counted for all section areas containing pyramidal neurons of layers III-V. For the control group subjected to sham hypoxia, the density of binuclear neurons was 4.49 ± 0.32 mm(2). In the hypoxia-adapted group, this density increased to 5.71 ± 0.39 mm(2) (P < 0.04). In a subgroup of rats exposed to only one hypoxia session, the number of binuclear neurons did not differ from the number observed in the control group. We suggest that the increased content of binuclear neurons may serve as a structural basis for the neuroprotective effects of the adaptation to hypoxia.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Fusão Celular , Hipóxia , Neurônios/fisiologia , Adaptação Fisiológica , Animais , Encéfalo/citologia , Masculino , Microscopia , Ratos , Ratos Wistar
8.
Med Sci Monit ; 11(8): HY31-8, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16049387

RESUMO

Disorders in memory and other cognitive functions in Alzheimer's disease (AD) may result from an exhaustion of adaptive reserves in the brain. Therefore it is a challenge to find methods to increase the adaptive reserve of the organism to combat AD. Excitotoxicity, Ca2+ homeostasis disruptions, oxidative stress, disturbed synthesis of NO, and impaired cerebral circulation are suggested as key pathogenic factors of AD. At present it appears that stimulation of the self-defense systems in neural cells is a promising strategy in restricting the progression of AD. These systems include those of antioxidants, heat shock proteins (HSPs), NO, and other so-called stress-limiting systems. Non-drug activation of these systems can be achieved most efficiently by adaptation of the organism to environmental challenges, such as hypoxia. In this paper the potential of methods used in adaptive medicine is explored. The protective mechanisms of adaptation to hypoxia may be related to restriction of oxidative stress in the hippocampus, the limitation of a decrease in NO production induced by beta-amyloid, and increased density of the vascular network in the brain. In this review we selectively present data that support the idea that adaptation to hypoxia is a possible non-drug means in the prevention of AD. In our opinion this strategy may provide a break-through in the clinical approach of this disease.


Assuntos
Adaptação Fisiológica , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Hipóxia/metabolismo , Modelos Biológicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Circulação Cerebrovascular , Meio Ambiente , Radicais Livres/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA