Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Cell Sci ; 132(2)2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30635443

RESUMO

Chk1 (encoded by CHEK1 in mammals) is an evolutionarily conserved protein kinase that transduces checkpoint signals from ATR to Cdc25A during the DNA damage response (DDR). In mammals, Chk1 also controls cellular proliferation even in the absence of exogenous DNA damage. However, little is known about how Chk1 regulates unperturbed cell cycle progression, and how this effect under physiological conditions differs from its regulatory role in DDR. Here, we have established near-diploid HCT116 cell lines containing endogenous Chk1 protein tagged with a minimum auxin-inducible degron (mAID) through CRISPR/Cas9-based gene editing. Establishment of these cells enabled us to induce specific and rapid depletion of the endogenous Chk1 protein, which resulted in aberrant accumulation of DNA damage factors that induced cell cycle arrest at S or G2 phase. Cdc25A was stabilized upon Chk1 depletion before the accumulation of DNA damage factors. Simultaneous depletion of Chk1 and Cdc25A partially suppressed the defects caused by Chk1 single depletion. These results indicate that, similar to its function in DDR, Chk1 controls normal cell cycle progression mainly by inducing Cdc25A degradation.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteólise , Pontos de Checagem da Fase S do Ciclo Celular , Fosfatases cdc25/metabolismo , Sistemas CRISPR-Cas , Quinase 1 do Ponto de Checagem/genética , Edição de Genes , Células HCT116 , Humanos , Fosfatases cdc25/genética
2.
Cancer Sci ; 109(9): 2632-2640, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29949679

RESUMO

Tetraploidy, a condition in which a cell has four homologous sets of chromosomes, is often seen as a natural physiological condition but is also frequently seen in pathophysiological conditions such as cancer. Tetraploidy facilitates chromosomal instability (CIN), which is an elevated level of chromosomal loss and gain that can cause production of a wide variety of aneuploid cells that carry structural and numerical aberrations of chromosomes. The resultant genomic heterogeneity supposedly expedites karyotypic evolution that confers oncogenic potential in spite of the reduced cellular fitness caused by aneuploidy. Recent studies suggest that tetraploidy might also be associated with aging; mice with mutations in an intermediate filament protein have revealed that these tetraploidy-prone mice exhibit tissue disorders associated with aging. Cellular senescence and its accompanying senescence-associated secretory phenotype have now emerged as critical factors that link tetraploidy and tetraploidy-induced CIN with cancer, and possibly with aging. Here, we review recent findings about how tetraploidy is related to cancer and possibly to aging, and discuss underlying mechanisms of the relationship, as well as how we can exploit the properties of cells exhibiting tetraploidy-induced CIN to control these pathological conditions.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Instabilidade Cromossômica/genética , Neoplasias/genética , Tetraploidia , Animais , Humanos , Camundongos
3.
Biochem Biophys Res Commun ; 498(3): 544-550, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518391

RESUMO

We previously reported that vimentin, GFAP, and desmin (type III intermediate filament [IF] proteins) are mitotically phosphorylated by CDK1, Aurora-B, and Rho-kinase. This phosphorylation is critical for efficient separation of these IFs and completion of cytokinesis. Keratin 5 (K5) and K14 form a heterodimer, which constitutes IF network in basal layer cells of stratified squamous epithelia. Here, we report that the solubility of K5/K14 increased in mitosis. The in vitro assays revealed that three mitotic kinases phosphorylate K5 more than K14. We then identified Thr23/Thr144, Ser30, and Thr159 on murine K5 as major phosphorylation sites for CDK1, Aurora-B, and Rho-kinase, respectively. Using site- and phosphorylation-state-specific antibodies, we demonstrated that K5-Thr23 was phosphorylated in entire cytoplasm from prometaphase to metaphase, whereas K5-Ser30 phosphorylation occurred specifically at the cleavage furrow from anaphase to telophase. Efficient K5/K14-IF separation was impaired by K5 mutations at the sites phosphorylated by these mitotic kinases. K5-Thr23 phosphorylation was widely detected in dividing K5-positive cells of murine individuals. These results suggested that mitotic reorganization of K5/K14-IF network is governed largely through K5 phosphorylation by CDK1, Aurora-B, and Rho-kinase.


Assuntos
Aurora Quinase B/metabolismo , Proteína Quinase CDC2/metabolismo , Filamentos Intermediários/metabolismo , Queratina-14/metabolismo , Queratina-15/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Linhagem Celular , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Mitose , Fosforilação
4.
Cell Mol Life Sci ; 74(5): 881-890, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27669693

RESUMO

The primary cilium is a non-motile and microtubule-enriched protrusion ensheathed by plasma membrane. Primary cilia function as mechano/chemosensors and signaling hubs and their disorders predispose to a wide spectrum of human diseases. Most types of cells assemble their primary cilia in response to cellular quiescence, whereas they start to retract the primary cilia upon cell-cycle reentry. The retardation of ciliary resorption process has been shown to delay cell-cycle progression to the S or M phase after cell-cycle reentry. Apart from this conventional concept of ciliary disassembly linked to cell-cycle reentry, recent studies have led to a novel concept, suggesting that cells can suppress primary cilia assembly during cell proliferation. Accumulating evidence has also demonstrated the importance of Aurora-A (a protein originally identified as one of mitotic kinases) not only in ciliary resorption after cell-cycle reentry but also in the suppression of ciliogenesis in proliferating cells, whereas Aurora-A activators are clearly distinct in both phenomena. Here, we summarize the current knowledge of how cycling cells suppress ciliogenesis and compare it with mechanisms underlying ciliary resorption after cell-cycle reentry. We also discuss a reciprocal relationship between primary cilia and cell proliferation.


Assuntos
Divisão Celular , Cílios/metabolismo , Organogênese , Animais , Ciclo Celular , Proliferação de Células , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
5.
J Cell Sci ; 128(11): 2057-69, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908861

RESUMO

The sphingolipids, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC), can induce or inhibit cellular migration. The intermediate filament protein vimentin is an inducer of migration and a marker for epithelial-mesenchymal transition. Given that keratin intermediate filaments are regulated by SPC, with consequences for cell motility, we wanted to determine whether vimentin is also regulated by sphingolipid signalling and whether it is a determinant for sphingolipid-mediated functions. In cancer cells where S1P and SPC inhibited migration, we observed that S1P and SPC induced phosphorylation of vimentin on S71, leading to a corresponding reorganization of vimentin filaments. These effects were sphingolipid-signalling-dependent, because inhibition of either the S1P2 receptor (also known as S1PR2) or its downstream effector Rho-associated kinase (ROCK, for which there are two isoforms ROCK1 and ROCK2) nullified the sphingolipid-induced effects on vimentin organization and S71 phosphorylation. Furthermore, the anti-migratory effect of S1P and SPC could be prevented by expressing S71-phosphorylation-deficient vimentin. In addition, we demonstrated, by using wild-type and vimentin-knockout mouse embryonic fibroblasts, that the sphingolipid-mediated inhibition of migration is dependent on vimentin. These results imply that this newly discovered sphingolipid-vimentin signalling axis exerts brake-and-throttle functions in the regulation of cell migration.


Assuntos
Movimento Celular/fisiologia , Esfingolipídeos/metabolismo , Vimentina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Camundongos , Fosforilação/fisiologia , Fosforilcolina/análogos & derivados , Fosforilcolina/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais/fisiologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Quinases Associadas a rho/metabolismo
6.
J Biol Chem ; 290(21): 12984-98, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847236

RESUMO

Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging.


Assuntos
Aneuploidia , Citocinese , Envelhecimento da Pele/patologia , Gordura Subcutânea/patologia , Tetraploidia , Vimentina/fisiologia , Animais , Western Blotting , Ciclo Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofluorescência , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Fosforilação , Gordura Subcutânea/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Cicatrização
7.
Biochem Biophys Res Commun ; 478(3): 1323-9, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27565725

RESUMO

Desmin is a type III intermediate filament (IF) component protein expressed specifically in muscular cells. Desmin is phosphorylated by Aurora-B and Rho-kinase specifically at the cleavage furrow from anaphase to telophase. The disturbance of this phosphorylation results in the formation of unusual long bridge-like IF structures (IF-bridge) between two post-mitotic (daughter) cells. Here, we report that desmin also serves as an excellent substrate for the other type of mitotic kinase, Cdk1. Desmin phosphorylation by Cdk1 loses its ability to form IFs in vitro. We have identified Ser6, Ser27, and Ser31 on murine desmin as phosphorylation sites for Cdk1. Using a site- and phosphorylation-state-specific antibody for Ser31 on desmin, we have demonstrated that Cdk1 phosphorylates desmin in entire cytoplasm from prometaphase to metaphase. Desmin mutations at Cdk1 sites exhibit IF-bridge phenotype, the frequency of which is significantly increased by the addition of Aurora-B and Rho-kinase site mutations to Cdk1 site mutations. In addition, Cdk1-induced desmin phosphorylation is detected in mitotic muscular cells of murine embryonic/newborn muscles and human rhabdomyosarcoma specimens. Therefore, Cdk1-induced desmin phosphorylation is required for efficient separation of desmin-IFs and generally detected in muscular mitotic cells in vivo.


Assuntos
Proteína Quinase CDC2/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Mitose , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Fosforilação , Fosfosserina/metabolismo , Rabdomiossarcoma/patologia
8.
Cell Struct Funct ; 40(1): 43-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748360

RESUMO

Checkpoint kinase 1 (Chk1) is a conserved protein kinase central to the cell-cycle checkpoint during DNA damage response (DDR). Until recently, ATR, a protein kinase activated in response to DNA damage or stalled replication, has been considered as the sole regulator of Chk1. Recent progress, however, has led to the identification of additional protein kinases involved in Chk1 phosphorylation, affecting the subcellular localization and binding partners of Chk1. In fact, spatio-temporal regulation of Chk1 is of critical importance not only in the DDR but also in normal cell-cycle progression. In due course, many potent inhibitors targeted to Chk1 have been developed as anticancer agents and some of these inhibitors are currently in clinical trials. In this review, we summarize the current knowledge of Chk1 regulation by phosphorylation.


Assuntos
Proteínas Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , Proteínas Quinases/química , Serina/metabolismo
9.
Cell Struct Funct ; 39(1): 45-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24451569

RESUMO

The microtubule (MT) cytoskeleton is essential for cellular morphogenesis, cell migration, and cell division. MT organization is primarily mediated by a variety of MT-associated proteins. Among these proteins, plus-end-tracking proteins (+TIPs) are evolutionarily conserved factors that selectively accumulate at growing MT plus ends. Cytoplasmic linker protein (CLIP)-170 is a +TIP that associates with diverse proteins to determine the behavior of MT ends and their linkage to intracellular structures, including mitotic chromosomes. However, how CLIP-170 activity is spatially and temporally controlled is largely unknown. Here, we show that phosphorylation at Ser312 in the third serine-rich region of CLIP-170 is increased during mitosis. Polo-like kinase 1 (Plk1) is responsible for this phosphorylation during the mitotic phase of dividing cells. In vitro analysis using a purified CLIP-170 N-terminal fragment showed that phosphorylation by Plk1 diminishes CLIP-170 binding to the MT ends and lattice without affecting binding to EB3. Furthermore, we demonstrate that during mitosis, stable kinetochore/MT attachment and subsequent chromosome alignment require CLIP-170 and a proper phosphorylation/dephosphorylation cycle at Ser312. We propose that CLIP-170 phosphorylation by Plk1 regulates proper chromosome alignment by modulating the interaction between CLIP-170 and MTs in mitotic cells and that CLIP-170 activity is stringently controlled by its phosphorylation state, which depends on the cellular context.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/química , Mitose , Proteínas de Neoplasias/química , Fosforilação , Polimerização , Ligação Proteica , Serina/metabolismo , Quinase 1 Polo-Like
10.
J Biol Chem ; 288(50): 35626-35, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24142690

RESUMO

Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIM(SA/SA)) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIM(WT/SA)) were indistinguishable from WT (VIM(WT/WT)) mice. In VIM(SA/SA) mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIM(SA/SA), reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIM(SA/SA), the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.


Assuntos
Aneuploidia , Catarata/etiologia , Catarata/metabolismo , Senescência Celular , Endoftalmite/etiologia , Endoftalmite/metabolismo , Células Epiteliais/patologia , Mitose , Vimentina/metabolismo , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Catarata/genética , Catarata/patologia , Núcleo Celular/patologia , Endoftalmite/genética , Endoftalmite/patologia , Células Epiteliais/metabolismo , Técnicas de Introdução de Genes , Cristalino/patologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Vimentina/química , Vimentina/genética
11.
EMBO J ; 29(16): 2802-12, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20639859

RESUMO

14-3-3 proteins control various cellular processes, including cell cycle progression and DNA damage checkpoint. At the DNA damage checkpoint, some subtypes of 14-3-3 (beta and zeta isoforms in mammalian cells and Rad24 in fission yeast) bind to Ser345-phosphorylated Chk1 and promote its nuclear retention. Here, we report that 14-3-3gamma forms a complex with Chk1 phosphorylated at Ser296, but not at ATR sites (Ser317 and Ser345). Ser296 phosphorylation is catalysed by Chk1 itself after Chk1 phosphorylation by ATR, and then ATR sites are rapidly dephosphorylated on Ser296-phosphorylated Chk1. Although Ser345 phosphorylation is observed at nuclear DNA damage foci, it occurs more diffusely in the nucleus. The replacement of endogenous Chk1 with Chk1 mutated at Ser296 to Ala induces premature mitotic entry after ultraviolet irradiation, suggesting the importance of Ser296 phosphorylation in the DNA damage response. Although Ser296 phosphorylation induces the only marginal change in Chk1 catalytic activity, 14-3-3gamma mediates the interaction between Chk1 and Cdc25A. This ternary complex formation has an essential function in Cdc25A phosphorylation and degradation to block premature mitotic entry after DNA damage.


Assuntos
Proteínas 14-3-3/metabolismo , Dano ao DNA , Mitose , Proteínas Quinases/metabolismo , Fosfatases cdc25/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Serina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo
12.
IUBMB Life ; 66(3): 195-200, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24659572

RESUMO

Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.

13.
Cell Mol Life Sci ; 70(20): 3893-905, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23475109

RESUMO

In most cell types, primary cilia protrude from the cell surface and act as major hubs for cell signaling, cell differentiation, and cell polarity. With the exception of some cells ciliated during cell proliferation, most cells begin to disassemble their primary cilia at cell cycle re-entry. Although the role of primary cilia disassembly on cell cycle progression is still under debate, recent data have emerged to support the idea that primary cilia exert influence on cell cycle progression. In this review, we emphasize a non-mitotic role of Aurora-A not only in the ciliary resorption at cell cycle re-entry but also in continuous suppression of cilia regeneration during cell proliferation. We also summarize recent new findings indicating that forced induction/suppression of primary cilia can affect cell cycle progression, in particular the transition from G0/G1 to S phase. In addition, we speculate how (de)ciliation affects cell cycle progression.


Assuntos
Ciclo Celular , Proliferação de Células , Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aurora Quinases , Centrossomo/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais
14.
J Cell Sci ; 124(Pt 13): 2113-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21628425

RESUMO

Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry.


Assuntos
Núcleo Celular/metabolismo , Mitose , Proteínas Quinases/biossíntese , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Centrossomo/metabolismo , Quinase 1 do Ponto de Checagem , Ciclina B1/genética , Ciclina B1/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno
15.
J Cell Sci ; 124(Pt 6): 857-64, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21325031

RESUMO

The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.


Assuntos
Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Choque Térmico/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas de Choque Térmico/genética , Humanos , Microtúbulos/genética , Proteínas Nucleares/genética , Ligação Proteica
16.
Nat Cell Biol ; 8(2): 180-7, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16378098

RESUMO

Mitotic chromosomal dynamics is regulated by the coordinated activities of many mitotic kinases, such as cyclin-dependent kinase 1 (Cdk1), Aurora-B or Polo-like kinase 1 (Plk1), but the mechanisms of their coordination remain unknown. Here, we report that Cdk1 phosphorylates Thr 59 and Thr 388 on inner centromere protein (INCENP), which regulates the localization and kinase activity of Aurora-B from prophase to metaphase. INCENP depletion disrupts Plk1 localization specifically at the kinetochore. This phenotype is rescued by the exogenous expression of INCENP wild type and INCENP mutated at Thr 59 to Ala (T59A), but not at Thr 388 to Ala (T388A). The replacement of endogenous INCENP with T388A resulted in the delay of progression from metaphase to anaphase. We propose that INCENP phosphorylation by Cdk1 is necessary for the recruitment of Plk1 to the kinetochore, and that the complex formation of Plk1 and Aurora-B on INCENP may play crucial roles in the regulation of chromosomal dynamics.


Assuntos
Anáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Metáfase/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Proteína Quinase CDC2/metabolismo , Células COS , Divisão do Núcleo Celular/fisiologia , Centrossomo/metabolismo , Chlorocebus aethiops , Proteínas Cromossômicas não Histona/genética , Expressão Gênica/genética , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose , Cinetocoros/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos , Survivina , Transfecção , Quinase 1 Polo-Like
17.
Cancer Sci ; 103(7): 1195-200, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22435685

RESUMO

DNA-damaging strategies, such as radiotherapy and the majority of chemotherapeutic therapies, are the most frequently used non-surgical anti-cancer therapies for human cancers. These therapies activate DNA damage/replication checkpoints, which induce cell-cycle arrest to provide the time needed to repair DNA damage. Due to genetic defect(s) in the ATM (ataxia-telangiectasia mutated)-Chk2-p53 pathway, an ATR (ATM- and Rad3-related)-Chk1-Cdc25 route is the sole checkpoint pathway in a majority of cancer cells. Chk1 inhibitors are expected to selectively induce the mitotic cell death (mitotic catastrophe) of cancer cells. However, recent new findings have pointed out that Chk1 is essential for the maintenance of genome integrity even during unperturbed cell-cycle progression, which is controlled by a variety of protein kinases. These observations have raised concerns about a possible risk of Chk1 inhibitors on the clinics. In this review, we summarize recent advances in Chk1 regulation by phosphorylation, and discuss Chk1 as a molecular target for cancer therapeutics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosfatases cdc25/metabolismo , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Humanos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34832899

RESUMO

Hepatic apoptosis is involved in a variety of pathophysiologic conditions in the liver, including hepatitis, steatosis, and drug-induced liver injury. The development of easy-to-perform and reliable in vivo assays would thus greatly enhance the efforts to understand liver diseases and identify associated genes and potential drugs. In this study, we developed a transgenic zebrafish line that was suitable for the assessment of caspase 3 activity in the liver by using in vivo fluorescence imaging. The larvae of transgenic zebrafish dominantly expressed Casper3GR in the liver under control of the promoter of the phosphoenolpyruvate carboxykinase 1 gene. Casper3GR is composed of two fluorescent proteins, tagGFP and tagRFP, which are connected via a peptide linker that can be cleaved by activated caspase 3. Under tagGFP excitation conditions in zebrafish that were exposed to the well-characterized hepatotoxicant isoniazid, we detected increased and decreased fluorescence associated with tagGFP and tagRFP, respectively. This result suggests that isoniazid activates caspase 3 in the zebrafish liver, which digests the linker between tagGFP and tagRFP, resulting in a reduction in the Förster resonance energy transfer to tagRFP upon tagGFP excitation. We also detected isoniazid-induced inhibition of caspase 3 activity in zebrafish that were treated with the hepatoprotectants ursodeoxycholic acid and obeticholic acid. The transgenic zebrafish that were developed in this study could be a powerful tool for identifying both hepatotoxic and hepatoprotective drugs, as well as for analyzing the effects of the genes of interest to hepatic apoptosis.

19.
J Biol Chem ; 284(49): 34223-30, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19837665

RESUMO

Chk1, one of the critical transducers in DNA damage/replication checkpoints, prevents entry into mitosis through inhibition of Cdk1 activity. However, it has remained unclear how this inhibition is cancelled at the G(2)/M transition. We reported recently that Chk1 is phosphorylated at Ser(286) and Ser(301) by Cdk1 during mitosis. Here, we show that mitotic Chk1 phosphorylation is accompanied by Chk1 translocation from the nucleus to the cytoplasm in prophase. This translocation advanced in accordance with prophase progression and was regulated by Crm-1-dependent nuclear export. Exogenous Chk1 mutated at Ser(286) and Ser(301) to Ala (S286A/S301A) was observed mainly in the nuclei of prophase cells, although such nuclear accumulation was hardly observed in wild-type Chk1. Induction of S286A/S301A resulted in the delay of mitotic entry. Biochemical analyses using immunoprecipitated cyclin B(1)-Cdk1 complexes revealed S286A/S301A expression to block the adequate activation of Cdk1. In support of this, S286A/S301A expression retained Wee1 at higher levels and Cdk1-induced phosphorylation of cyclin B(1) and vimentin at lower levels. A kinase-dead version of S286A/S301A also localized predominantly in the nucleus but lost the ability to delay mitotic entry. These results indicate that Chk1 phosphorylation by Cdk1 participates in cytoplasmic sequestration of Chk1 activity, which releases Cdk1 inhibition in the nucleus and promotes mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Ciclo Celular , Divisão Celular , Quinase 1 do Ponto de Checagem , Ciclina B1/metabolismo , Citoplasma/metabolismo , Fase G2 , Células HeLa , Humanos , Mitose , Fosforilação , Vimentina/metabolismo
20.
J Cell Biol ; 171(3): 431-6, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16260496

RESUMO

Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Vimentina/metabolismo , Citoesqueleto de Actina/fisiologia , Motivos de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Proteína Quinase CDC2/genética , Catálise , Proteínas de Ciclo Celular/genética , Linhagem Celular , Citocinese , Humanos , Camundongos , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Serina/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA