Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 153(7): 1579-88, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791184

RESUMO

An ultimate goal of evolutionary biology is the prediction and experimental verification of adaptive trajectories on macroevolutionary timescales. This aim has rarely been achieved for complex biological systems, as models usually lack clear correlates of organismal fitness. Here, we simulate the fitness landscape connecting two carbon fixation systems: C3 photosynthesis, used by most plant species, and the C4 system, which is more efficient at ambient CO2 levels and elevated temperatures and which repeatedly evolved from C3. Despite extensive sign epistasis, C4 photosynthesis is evolutionarily accessible through individually adaptive steps from any intermediate state. Simulations show that biochemical subtraits evolve in modules; the order and constitution of modules confirm and extend previous hypotheses based on species comparisons. Plant-species-designated C3-C4 intermediates lie on predicted evolutionary trajectories, indicating that they indeed represent transitory states. Contrary to expectations, we find no slowdown of adaptation and no diminishing fitness gains along evolutionary trajectories.


Assuntos
Evolução Biológica , Fotossíntese , Plantas/genética , Adaptação Fisiológica , Ciclo do Carbono , Epistasia Genética , Evolução Molecular , Aptidão Genética , Mutação , Fenômenos Fisiológicos Vegetais , Plantas/classificação
2.
Plant Cell ; 32(4): 871-887, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32060173

RESUMO

Transcriptome analysis by RNA sequencing (RNA-seq) has become an indispensable research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady state transcriptome, which contains valuable information about RNA populations at a given time but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing, have been used to provide information about RNA synthesis rates in plants. Here, we demonstrate that RNA labeling with the modified, nontoxic uridine analog 5-ethynyl uridine (5-EU) in Arabidopsis (Arabidopsis thaliana) seedlings provides insight into plant transcriptome dynamics. Pulse labeling with 5-EU revealed nascent and unstable RNAs, RNA processing intermediates generated by splicing, and chloroplast RNAs. Pulse-chase experiments with 5-EU allowed us to determine RNA stabilities without the need for chemical transcription inhibitors such as actinomycin and cordycepin. Inhibitor-free, genome-wide analysis of polyadenylated RNA stability via 5-EU pulse-chase experiments revealed RNAs with shorter half-lives than those reported after chemical inhibition of transcription. In summary, our results indicate that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates and suggest that polyadenylated RNAs have low stability in plants. Our technique lays the foundation for easy, affordable, nascent transcriptome analysis and inhibitor-free analysis of RNA stability in plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , RNA de Plantas/genética , Coloração e Rotulagem , Transcriptoma/genética , Meia-Vida , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Plântula/genética , Uridina/metabolismo
3.
Plant J ; 101(1): 204-216, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529521

RESUMO

C4 photosynthetic plants have evolved from C3 ancestors and are characterized by differential expression of several hundred genes. Strict compartmentalization of key C4 enzymes either to mesophyll (M) or bundle sheath cells is considered a crucial step towards the evolution of C4 photosynthesis. In this study, we demonstrate that the 5'-flanking sequences of the C4 type phosphoenolpyruvate carboxylase (Ppc) gene from three C4 grass species could drive M-cell-specific expression of a reporter gene in rice. In addition to that, we identified about 450 bp (upstream of their transcription start site) of the analyzed C4 Ppc promoters contain all the essential regulatory elements for driving M-cell-specific expression in rice leaves. Importantly, four motifs of conserved nucleotide sequences (CNSs) were also determined, which are essential for the activity of the promoter. A putative interaction between the CNSs and an unknown upstream element(s) is required for driving M-cell-specific expression. This work identifies the evolutionary conservation of C4 Ppc regulatory mechanisms of multiple closely related C4 grass species.


Assuntos
Células do Mesofilo/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
Plant J ; 97(5): 984-995, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447112

RESUMO

The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre-condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4 -like bundle sheath. To this end, an ethylmethanesulfonate (EMS)-based forward genetic screen was established in the Brassicaceae C3  species Arabidopsis thaliana. To ensure a high-throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast-targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping-by-sequencing approach the genomic segments that contained mutated candidate genes were identified.


Assuntos
Arabidopsis/genética , Genoma de Planta/genética , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Cloroplastos/metabolismo , Mapeamento Cromossômico , Metanossulfonato de Etila , Genes Reporter , Proteínas de Fluorescência Verde , Luciferases , Mutagênese , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
5.
J Exp Bot ; 70(2): 575-587, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30357386

RESUMO

Photorespiration is indispensable for oxygenic photosynthesis since it detoxifies and recycles 2-phosphoglycolate (2PG), which is the primary oxygenation product of Rubisco. However, C4 plant species typically display very low rates of photorespiration due to their efficient biochemical carbon-concentrating mechanism. Thus, the broader relevance of photorespiration in these organisms remains unclear. In this study, we assessed the importance of a functional photorespiratory pathway in the C4 plant Flaveria bidentis using knockdown of the first enzymatic step, namely 2PG phosphatase (PGLP). The isolated RNAi lines showed strongly reduced amounts of PGLP protein, but distinct signs of the photorespiratory phenotype only emerged below 5% residual PGLP protein. Lines with this characteristic were stunted in growth, had strongly increased 2PG content, exhibited accelerated leaf senescence, and accumulated high amounts of branched-chain and aromatic amino acids, which are both characteristics of incipient carbon starvation. Oxygen-dependent gas-exchange measurements consistently suggested the cumulative impairment of ribulose-1,5-bisphosphate regeneration with increased photorespiratory pressure. Our results indicate that photorespiration is essential for maintaining high rates of C4 photosynthesis by preventing the 2PG-mediated inhibition of carbon utilization efficiency. However, considerably higher 2PG accumulation can be tolerated compared to equivalent lines of C3 plants due to the differential distribution of specific enzymatic steps between the mesophyll and bundle sheath cells.


Assuntos
Flaveria/metabolismo , Glicolatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plantas Geneticamente Modificadas
6.
J Exp Bot ; 69(20): 4897-4906, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032291

RESUMO

The bundle sheath provides a conduit linking veins and mesophyll cells. In the C3 plant Arabidopsis thaliana, it also plays important roles in oxidative stress and sulphur metabolism. However, the mechanisms responsible for the patterns of gene expression that underpin these metabolic specializations are poorly understood. Here, we used the Arabidopsis SULTR2;2 gene as a model to better understand mechanisms that restrict expression to the bundle sheath. Deletion analysis indicated that the SULTR2;2 promoter contains a short region necessary for expression in the bundle sheath and veins. This sequence acts as a positive regulator and is tolerant to multiple consecutive deletions indicating considerable redundancy in the cis-elements involved. It is highly conserved in SULTR2;2 genes of the Brassicaceae and is functional in the distantly related C4 species Flaveria bidentis that belongs to the Asteraceae. We conclude that expression of SULTR2;2 in the bundle sheath and veins is underpinned by a highly redundant sequence that likely represents an ancient and conserved mechanism found in families as diverse as the Asteraceae and Brassicaceae.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Arabidopsis/metabolismo , Sequência de Bases , Alinhamento de Sequência
7.
J Exp Bot ; 68(2): 161-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660482

RESUMO

Some species of Salsoleae (Chenopodiaceae) convert from C3 photosynthesis during the seedling stage to the C4 pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C4 syndrome from the C3 condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C4 enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C3 phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C4 NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.


Assuntos
Cotilédone/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Salsola/metabolismo , Isótopos de Carbono/metabolismo , Cotilédone/anatomia & histologia , Perfilação da Expressão Gênica , Folhas de Planta/anatomia & histologia , Salsola/anatomia & histologia , Salsola/crescimento & desenvolvimento , Transcriptoma
8.
J Exp Bot ; 68(2): 191-206, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28110276

RESUMO

Evolution of C4 photosynthesis is not distributed evenly in the plant kingdom. Particularly interesting is the situation in the Brassicaceae, because the family contains no C4 species, but several C3-C4 intermediates, mainly in the genus Moricandia Investigation of leaf anatomy, gas exchange parameters, the metabolome, and the transcriptome of two C3-C4 intermediate Moricandia species, M. arvensis and M. suffruticosa, and their close C3 relative M. moricandioides enabled us to unravel the specific C3-C4 characteristics in these Moricandia lines. Reduced CO2 compensation points in these lines were accompanied by anatomical adjustments, such as centripetal concentration of organelles in the bundle sheath, and metabolic adjustments, such as the balancing of C and N metabolism between mesophyll and bundle sheath cells by multiple pathways. Evolution from C3 to C3-C4 intermediacy was probably facilitated first by loss of one copy of the glycine decarboxylase P-protein, followed by dominant activity of a bundle sheath-specific element in its promoter. In contrast to recent models, installation of the C3-C4 pathway was not accompanied by enhanced activity of the C4 cycle. Our results indicate that metabolic limitations connected to N metabolism or anatomical limitations connected to vein density could have constrained evolution of C4 in Moricandia.


Assuntos
Evolução Biológica , Brassicaceae/metabolismo , Complexo Glicina Descarboxilase/genética , Fotossíntese , Folhas de Planta/anatomia & histologia , Brassicaceae/anatomia & histologia , Brassicaceae/genética , Dióxido de Carbono/metabolismo , Metaboloma , Filogenia , Folhas de Planta/metabolismo , Transcriptoma
9.
J Exp Bot ; 68(2): 311-320, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040798

RESUMO

The first two reactions of C4 photosynthesis are catalysed by carbonic anhydrase (CA) and phosphoenolpyruvate carboxylase (PEPC) in the leaf mesophyll (M) cell cytosol. Translatome experiments using a tagged ribosomal protein expressed under the control of M and bundle-sheath (BS) cell-specific promoters showed transcripts encoding CA3 from the C4 species Flaveria bidentis were highly enriched in polysomes from M cells relative to those of the BS. Localisation experiments employing a CA3-green fluorescent protein fusion protein showed F. bidentis CA3 is a cytosolic enzyme. A motif showing high sequence homology to that of the Flaveria M expression module 1 (MEM1) element was identified approximately 2 kb upstream of the F. bidentis and F. trinervia ca3 translation start sites. MEM1 is located in the promoter of C4 Flaveria ppcA genes, which encode the C4-associated PEPC, and is necessary for M-specific expression. No MEM1-like sequence was found in the 4 kb upstream of the C3 species F. pringlei ca3 translation start site. Promoter-reporter fusion experiments demonstrated the region containing the ca3 MEM1-like element also directs M-specific expression. These results support the idea that a common regulatory switch drives the expression of the C4 Flaveria ca3 and ppcA1 genes specifically in M cells.


Assuntos
Flaveria/enzimologia , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/enzimologia , Sequência de Bases , Flaveria/genética , Dados de Sequência Molecular
10.
Nature ; 476(7361): 472-5, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21866161

RESUMO

Pyruvate serves as a metabolic precursor for many plastid-localized biosynthetic pathways, such as those for fatty acids, terpenoids and branched-chain amino acids. In spite of the importance of pyruvate uptake into plastids (organelles within cells of plants and algae), the molecular mechanisms of this uptake have not yet been explored. This is mainly because pyruvate is a relatively small compound that is able to passively permeate lipid bilayers, which precludes accurate measurement of pyruvate transport activity in reconstituted liposomes. Using differential transcriptome analyses of C(3) and C(4) plants of the genera Flaveria and Cleome, here we have identified a novel gene that is abundant in C(4) species, named BASS2 (BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2). The BASS2 protein is localized at the chloroplast envelope membrane, and is highly abundant in C(4) plants that have the sodium-dependent pyruvate transporter. Recombinant BASS2 shows sodium-dependent pyruvate uptake activity. Sodium influx is balanced by a sodium:proton antiporter (NHD1), which was mimicked in recombinant Escherichia coli cells expressing both BASS2 and NHD1. Arabidopsis thaliana bass2 mutants lack pyruvate uptake into chloroplasts, which affects plastid-localized isopentenyl diphosphate synthesis, as evidenced by increased sensitivity of such mutants to mevastatin, an inhibitor of cytosolic isopentenyl diphosphate biosynthesis. We thus provide molecular evidence for a sodium-coupled metabolite transporter in plastid envelopes. Orthologues of BASS2 can be detected in all the genomes of land plants that have been characterized so far, thus indicating the widespread importance of sodium-coupled pyruvate import into plastids.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Sódio/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Proteínas de Cloroplastos , Flaveria/genética , Flaveria/crescimento & desenvolvimento , Flaveria/metabolismo , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Transportadores de Ácidos Monocarboxílicos , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plastídeos/genética , Ácido Pirúvico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Simportadores , Transcrição Gênica
11.
J Exp Bot ; 67(10): 2953-62, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912798

RESUMO

C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C4 pathway is more efficient than C3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C4 evolution that not only includes the avoidance of photorespiration as the major driving force for C4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C3 to C4.


Assuntos
Fotossíntese/fisiologia , Evolução Biológica , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas/metabolismo
12.
J Exp Bot ; 67(10): 3053-64, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26976818

RESUMO

One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath.


Assuntos
Genes de Plantas/fisiologia , Fotossíntese/genética , Sorghum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Hibridização In Situ , RNA de Plantas/genética , RNA de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Sorghum/citologia , Sorghum/fisiologia
13.
Plant Cell ; 25(7): 2522-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23847152

RESUMO

C4 photosynthesis is nature's most efficient answer to the dual activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the resulting loss of CO(2) by photorespiration. Gly decarboxylase (GDC) is the key component of photorespiratory CO(2) release in plants and is active in all photosynthetic tissues of C(3) plants, but only in the bundle sheath cells of C(4) plants. The restriction of GDC to the bundle sheath is assumed to be an essential and early step in the evolution of C(4) photosynthesis, leading to a photorespiratory CO(2) concentrating mechanism. In this study, we analyzed how the P-protein of GDC (GLDP) became restricted to the bundle sheath during the transition from C(3) to C(4) photosynthesis in the genus Flaveria. We found that C(3) Flaveria species already contain a bundle sheath-expressed GLDP gene in addition to a ubiquitously expressed second gene, which became a pseudogene in C(4) Flaveria species. Analyses of C(3)-C(4) intermediate Flaveria species revealed that the photorespiratory CO(2) pump was not established in one single step, but gradually. The knowledge gained by this study sheds light on the early steps in C(4) evolution.


Assuntos
Flaveria/metabolismo , Glicina Desidrogenase (Descarboxilante)/metabolismo , Fotossíntese , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Evolução Molecular , Flaveria/classificação , Flaveria/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicina Desidrogenase (Descarboxilante)/classificação , Glicina Desidrogenase (Descarboxilante)/genética , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Consumo de Oxigênio/efeitos da radiação , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Splicing de RNA , Ribulose-Bifosfato Carboxilase/genética , Especificidade da Espécie
14.
BMC Evol Biol ; 15: 116, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084484

RESUMO

BACKGROUND: The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). RESULTS: Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). CONCLUSIONS: We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.


Assuntos
Flaveria/classificação , Flaveria/genética , Filogenia , Sequência de Aminoácidos , Evolução Biológica , Cloroplastos/genética , Flaveria/fisiologia , Fotossíntese , RNA de Plantas/análise , Análise de Sequência de RNA/métodos
15.
Plant Physiol ; 165(3): 1076-1091, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24850859

RESUMO

The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.

16.
Plant Cell ; 24(1): 137-51, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22294620

RESUMO

The mitochondrial Gly decarboxylase complex (GDC) is a key component of the photorespiratory pathway that occurs in all photosynthetically active tissues of C(3) plants but is restricted to bundle sheath cells in C(4) species. GDC is also required for general cellular C(1) metabolism. In the Asteracean C(4) species Flaveria trinervia, a single functional GLDP gene, GLDPA, encodes the P-subunit of GDC, a decarboxylating Gly dehydrogenase. GLDPA promoter reporter gene fusion studies revealed that this promoter is active in bundle sheath cells and the vasculature of transgenic Flaveria bidentis (C(4)) and the Brassicacean C(3) species Arabidopsis thaliana, suggesting the existence of an evolutionarily conserved gene regulatory system in the bundle sheath. Here, we demonstrate that GLDPA gene regulation is achieved by an intricate interplay of transcriptional and posttranscriptional mechanisms. The GLDPA promoter is composed of two tandem promoters, P(R2) and P(R7), that together ensure a strong bundle sheath expression. While the proximal promoter (P(R7)) is active in the bundle sheath and vasculature, the distal promoter (P(R2)) drives uniform expression in all leaf chlorenchyma cells and the vasculature. An intron in the 5' untranslated leader of P(R2)-derived transcripts is inefficiently spliced and apparently suppresses the output of P(R2) by eliciting RNA decay.


Assuntos
Flaveria/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flaveria/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética
17.
Nature ; 457(7229): 551-6, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19189423

RESUMO

Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Poaceae/genética , Sorghum/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Genes de Plantas , Oryza/genética , Populus/genética , Recombinação Genética/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Deleção de Sequência/genética , Zea mays/genética
18.
Plant Cell ; 23(6): 2087-105, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21705644

RESUMO

Selective pressure exerted by a massive decline in atmospheric CO(2) levels 55 to 40 million years ago promoted the evolution of a novel, highly efficient mode of photosynthetic carbon assimilation known as C(4) photosynthesis. C(4) species have concurrently evolved multiple times in a broad range of plant families, and this multiple and parallel evolution of the complex C(4) trait indicates a common underlying evolutionary mechanism that might be elucidated by comparative analyses of related C(3) and C(4) species. Here, we use mRNA-Seq analysis of five species within the genus Flaveria, ranging from C(3) to C(3)-C(4) intermediate to C(4) species, to quantify the differences in the transcriptomes of closely related plant species with varying degrees of C(4)-associated characteristics. Single gene analysis defines the C(4) cycle enzymes and transporters more precisely and provides new candidates for yet unknown functions as well as identifies C(4) associated pathways. Molecular evidence for a photorespiratory CO(2) pump prior to the establishment of the C(4) cycle-based CO(2) pump is provided. Cluster analysis defines the upper limit of C(4)-related gene expression changes in mature leaves of Flaveria as 3582 alterations.


Assuntos
Evolução Biológica , Carbono/química , Carbono/metabolismo , Flaveria/genética , Flaveria/metabolismo , Fotossíntese/genética , Aminoácidos/metabolismo , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Cloroplastos/metabolismo , Análise por Conglomerados , Transporte de Elétrons , Flaveria/anatomia & histologia , Flaveria/classificação , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Filogenia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Transcriptoma
19.
Planta ; 237(2): 481-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22968911

RESUMO

A pair of GOLDEN2-LIKE transcription factors is required for normal chloroplast development in land plant species that encompass the range from bryophytes to angiosperms. In the C(4) plant maize, compartmentalized function of the two GLK genes in bundle sheath and mesophyll cells regulates dimorphic chloroplast differentiation, whereas in the C(3) plants Physcomitrella patens and Arabidopsis thaliana the genes act redundantly in all photosynthetic cells. To assess whether the cell-specific function of GLK genes is unique to maize, we analyzed gene expression patterns in the C(4) monocot Sorghum bicolor and C(4) eudicot Cleome gynandra. Compartmentalized expression was observed in S. bicolor, consistent with the development of dimorphic chloroplasts in this species, but not in C. gynandra where bundle sheath and mesophyll chloroplasts are morphologically similar. The generation of single and double mutants demonstrated that GLK genes function redundantly in rice, as in other C(3) plants, despite the fact that GLK gene duplication in monocots preceded the speciation of rice, maize and sorghum. Together with phylogenetic analyses of GLK gene sequences, these data have allowed speculation on the evolutionary trajectory of GLK function. Based on current evidence, most species that retain single GLK genes belong to orders that contain only C(3) species. We therefore propose that the ancestral state is a single GLK gene, and hypothesize that GLK gene duplication enabled sub-functionalization, which in turn enabled cell-specific function in C(4) plants with dimorphic chloroplasts. In this scenario, GLK gene duplication preconditioned the evolution of C(4) physiology that is associated with chloroplast dimorphism.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Sorghum/genética , Sequência de Bases , Clorofila/genética , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Especiação Genética , Células do Mesofilo/metabolismo , Células do Mesofilo/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutagênese Insercional , Oryza/anatomia & histologia , Oryza/metabolismo , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Sorghum/metabolismo , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA