Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
2.
J Immunol ; 206(2): 273-281, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33397741

RESUMO

Lymph node stromal cells coordinate the adaptive immune response in secondary lymphoid organs, providing both a structural matrix and soluble factors that regulate survival and migration of immune cells, ultimately promoting Ag encounter. In several inflamed tissues, resident fibroblasts can acquire lymphoid-stroma properties and drive the formation of ectopic aggregates of immune cells, named tertiary lymphoid structures (TLSs). Mature TLSs are functional sites for the development of adaptive responses and, consequently, when present, can have an impact in both autoimmunity and cancer conditions. In this review, we go over recent findings concerning both lymph node stromal cells and TLSs function and formation and further describe what is currently known about their role in disease, particularly their potential in tolerance.


Assuntos
Linfonodos/citologia , Vasos Linfáticos/imunologia , Neoplasias/imunologia , Células Estromais/imunologia , Estruturas Linfoides Terciárias/imunologia , Imunidade Adaptativa , Animais , Autoimunidade , Humanos , Tolerância Imunológica
3.
J Immunol ; 204(2): 360-374, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836657

RESUMO

Balanced activity of kinases and phosphatases downstream of the BCR is essential for B cell differentiation and function and is disturbed in chronic lymphocytic leukemia (CLL). In this study, we employed IgH.TEµ mice, which spontaneously develop CLL, and stable EMC CLL cell lines derived from these mice to explore the role of phosphatases in CLL. Genome-wide expression profiling comparing IgH.TEµ CLL cells with wild-type splenic B cells identified 96 differentially expressed phosphatase genes, including SH2-containing inositol phosphatase (Ship2). We found that B cell-specific deletion of Ship2, but not of its close homolog Ship1, significantly reduced CLL formation in IgH.TEµ mice. Treatment of EMC cell lines with Ship1/2 small molecule inhibitors resulted in the induction of caspase-dependent apoptosis. Using flow cytometry and Western blot analysis, we observed that blocking Ship1/2 abrogated EMC cell survival by exerting dual effects on the BCR signaling cascade. On one hand, specific Ship1 inhibition enhanced calcium signaling and thereby abrogated an anergic response to BCR stimulation in CLL cells. On the other hand, concomitant Ship1/Ship2 inhibition or specific Ship2 inhibition reduced constitutive activation of the mTORC1/ribosomal protein S6 pathway and downregulated constitutive expression of the antiapoptotic protein Mcl-1, in both EMC cell lines and primary IgH.TEµ CLL cells. Importantly, also in human CLL, we found overexpression of many phosphatases including SHIP2. Inhibition of SHIP1/SHIP2 reduced cellular survival and S6 phosphorylation and enhanced basal calcium levels in human CLL cells. Taken together, we provide evidence that SHIP2 contributes to CLL pathogenesis in mouse and human CLL.


Assuntos
Linfócitos B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética
4.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396892

RESUMO

Antibody responses to Mycoplasma pneumoniae correlate with pulmonary M. pneumoniae clearance. However, M. pneumoniae-specific IgG antibodies can cross-react with the myelin glycolipid galactocerebroside (GalC) and cause neurological disorders. We assessed whether antiglycolipid antibody formation is part of the physiological immune response to M. pneumoniae We show that antibodies against M. pneumoniae proteins and glycolipids arise in serum of M. pneumoniae-infected children and mice. Although antibodies to M. pneumoniae glycolipids were mainly IgG, anti-GalC antibodies were only IgM. B-1a cells, shown to aid in protection against pathogen-derived glycolipids, are lacking in Bruton tyrosine kinase (Btk)-deficient mice. M. pneumoniae-infected Btk-deficient mice developed M. pneumoniae-specific IgG responses to M. pneumoniae proteins but not to M. pneumoniae glycolipids, including GalC. The equal recovery from M. pneumoniae infection in Btk-deficient and wild-type mice suggests that pulmonary M. pneumoniae clearance is predominantly mediated by IgG reactive with M. pneumoniae proteins and that M. pneumoniae glycolipid-specific IgG or IgM is not essential. These data will guide the development of M. pneumoniae-targeting vaccines that avoid the induction of neurotoxic antibodies.


Assuntos
Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Glicolipídeos/imunologia , Mycoplasma pneumoniae/imunologia , Pneumonia por Mycoplasma/imunologia , Animais , Anticorpos Antibacterianos/sangue , Criança , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Camundongos
5.
Cell Rep ; 30(12): 4110-4123.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209472

RESUMO

Within lymph nodes (LNs), T follicular helper (TFH) cells help B cells to produce antibodies, which can either be protective or autoreactive. Here, we demonstrate that murine LN stromal cells (LNSCs) suppress the formation of autoreactive TFH cells in an antigen-specific manner, thereby significantly reducing germinal center B cell responses directed against the same self-antigen. Mechanistically, LNSCs express and present self-antigens in major histocompatibility complex (MHC) class II, leading to the conversion of naive CD4+ T cells into T regulatory (TREG) cells in an interleukin-2 (IL-2)-dependent manner. Upon blockade of TREG cells, using neutralizing IL-2 antibodies, autoreactive TFH cells are allowed to develop. We conclude that the continuous presentation of self-antigens by LNSCs is critical to generate antigen-specific TREG cells, thereby repressing the formation of TFH cells and germinal center B cell responses. Our findings uncover the ability of LNSCs to suppress the early activation of autoreactive immune cells and maintain peripheral tolerance.


Assuntos
Linfócitos B/imunologia , Epitopos/imunologia , Linfonodos/citologia , Linfócitos T Reguladores/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Autoantígenos/imunologia , Centro Germinativo/imunologia , Humanos , Interleucina-2/metabolismo , Camundongos Endogâmicos C57BL , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA