Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Enzymol ; 392: 242-77, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15644186

RESUMO

During the past five years, RNA interference (RNAi) has emerged as arguably the best functional genomics tool available to date, providing direct, causal links between individual genes and loss-of-function phenotypes through robust, broadly applicable, and readily upscalable methodologies. Originally applied experimentally in C. elegans and Drosophila, RNAi is now widely used in mammalian cell systems also. The development of commercially available libraries of short interfering RNAs (siRNAs) and other RNAi silencing reagents targeting entire classes of human genes provide the opportunity to carry out genome-scale screens to discover and characterize gene functions directly in human cells. A key challenge of these studies, also faced by earlier genomics or proteomics approaches, resides in reaching an optimal balance between the necessarily high throughput and the desire to achieve the same level of detailed analysis that is routine in conventional small-scale studies. This chapter discusses technical aspects of how to perform such screens, what parameters to monitor, and which readouts to apply. Examples of homogenous assays and multiplexed high-content microscopy-based screens are demonstrated.


Assuntos
Genômica , Interferência de RNA , Apoptose , Automação , Divisão Celular , Linhagem Celular Tumoral , Genes Reporter , Humanos , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA