Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2218473120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716372

RESUMO

The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The Escherichia coli Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like Caulobacter vibrioides) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from C. vibrioides can complement the deletion of both LolA and LolB in E. coli, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of C. vibrioides LolA that is responsible for its bifunctionality. This knowledge enabled us to convert E. coli LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
2.
Mol Microbiol ; 119(5): 586-598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920223

RESUMO

Bacterial two-component signal transduction systems provide sensory inputs for appropriately adapting gene expression. These systems rely on a histidine kinase that phosphorylates a response regulator which alters gene expression. Several two-component systems include additional sensory components that can activate the histidine kinase. In Escherichia coli, the lipoprotein NlpE was identified as a sensor for the Cpx cell envelope stress response. It has remained unclear how NlpE signals to Cpx in the periplasm. In this study, we used a combination of genetics, biochemistry, and AlphaFold2 complex modeling to uncover the molecular details of how NlpE triggers the Cpx response through an interaction with the CpxA histidine kinase. Remarkably, only a short loop of NlpE is required to activate the Cpx response. A single substitution in this loop inactivates NlpE signaling to Cpx and abolishes an in vivo biochemical NlpE:CpxA interaction. An independent AlphaFold multimer prediction supported a role for the loop and predicted an interaction interface at CpxA. Mutations in this CpxA region specifically blind the histidine kinase to NlpE activation but preserve the ability to respond to other cell envelope stressors. Hence, our work additionally reveals a previously unrecognized complexity in signal integration by the CpxA periplasmic sensor domain.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
3.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
4.
Trends Biochem Sci ; 42(3): 232-242, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27839654

RESUMO

The Escherichia coli cell envelope is a protective barrier at the frontline of interaction with the environment. Fidelity of envelope biogenesis must be monitored to establish and maintain a contiguous barrier. Indeed, the envelope must also be repaired and modified in response to environmental assaults. Envelope stress responses (ESRs) sense envelope damage or defects and alter the transcriptome to mitigate stress. Here, we review recent insights into the stress-sensing mechanisms of the σE and Cpx systems and the interaction of these ESRs. Small RNAs (sRNAs) are increasingly prominent regulators of the transcriptional response to stress. These fast-acting regulators also provide avenues for inter-ESR regulation that could be important when cells face multiple contemporaneous stresses, as is the case during infection.


Assuntos
Membrana Celular/metabolismo , Escherichia coli/citologia , Estresse Fisiológico , Pequeno RNA não Traduzido/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(10): 2359-2364, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463713

RESUMO

The ß-barrel assembly machine (Bam) complex folds and inserts integral membrane proteins into the outer membrane of Gram-negative bacteria. The two essential components of the complex, BamA and BamD, both interact with substrates, but how the two coordinate with each other during assembly is not clear. To elucidate aspects of this process we slowed the assembly of an essential ß-barrel substrate of the Bam complex, LptD, by changing a conserved residue near the C terminus. This defective substrate is recruited to the Bam complex via BamD but is unable to integrate into the membrane efficiently. Changes in the extracellular loops of BamA partially restore assembly kinetics, implying that BamA fails to engage this defective substrate. We conclude that substrate binding to BamD activates BamA by regulating extracellular loop interactions for folding and membrane integration.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Cinética , Modelos Moleculares , Periplasma/química , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
6.
Proc Natl Acad Sci U S A ; 115(28): E6614-E6621, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941590

RESUMO

The outer membrane (OM) of Gram-negative bacteria forms a robust permeability barrier that blocks entry of toxins and antibiotics. Most OM proteins (OMPs) assume a ß-barrel fold, and some form aqueous channels for nutrient uptake and efflux of intracellular toxins. The Bam machine catalyzes rapid folding and assembly of OMPs. Fidelity of OMP biogenesis is monitored by the σE stress response. When OMP folding defects arise, the proteases DegS and RseP act sequentially to liberate σE into the cytosol, enabling it to activate transcription of the stress regulon. Here, we identify batimastat as a selective inhibitor of RseP that causes a lethal decrease in σE activity in Escherichia coli, and we further identify RseP mutants that are insensitive to inhibition and confer resistance. Remarkably, batimastat treatment allows the capture of elusive intermediates in the OMP biogenesis pathway and offers opportunities to better understand the underlying basis for σE essentiality.


Assuntos
Proteínas da Membrana Bacteriana Externa , Endopeptidases , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana , Desdobramento de Proteína , Fatores de Transcrição , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo
7.
Bioessays ; 40(4): e1700187, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29512860

RESUMO

The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
8.
Proc Natl Acad Sci U S A ; 114(18): 4769-4774, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416660

RESUMO

The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins' key function is to prevent lethal accumulation of mislocalized lipoproteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Chaperonas Moleculares , Proteínas Periplásmicas de Ligação/genética , Transporte Proteico/fisiologia
9.
J Bacteriol ; 201(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30858299

RESUMO

The Gram-negative outer membrane (OM) is a selectively permeable asymmetric bilayer that allows vital nutrients to diffuse into the cell but prevents toxins and hydrophobic molecules from entering. Functionally and structurally diverse ß-barrel outer membrane proteins (OMPs) build and maintain the permeability barrier, making the assembly of OMPs crucial for cell viability. In this work, we characterize an assembly-defective mutant of the maltoporin LamB, LamBG439D We show that the folding defect of LamBG439D results in an accumulation of unfolded substrate that is toxic to the cell when the periplasmic protease DegP is removed. Selection for suppressors of this toxicity identified the novel mutant degSA323E allele. The mutant DegSA323E protein contains an amino acid substitution at the PDZ/protease domain interface that results in a partially activated conformation of this protein. This activation increases basal levels of downstream σE stress response signaling. Furthermore, the enhanced σE activity of DegSA323E suppresses a number of other assembly-defective conditions without exhibiting the toxicity associated with high levels of σE activity. We propose that the increased basal levels of σE signaling primes the cell to respond to envelope stress before OMP assembly defects threaten cell viability. This finding addresses the importance of envelope stress responses in monitoring the OMP assembly process and underpins the critical balance between envelope defects and stress response activation.IMPORTANCE Gram-negative bacteria, such as Escherichia coli, inhabit a natural environment that is prone to flux. In order to cope with shifting growth conditions and the changing availability of nutrients, cells must be capable of quickly responding to stress. Stress response pathways allow cells to rapidly shift gene expression profiles to ensure survival in this unpredictable environment. Here we describe a mutant that partially activates the σE stress response pathway. The elevated basal level of this stress response allows the cell to quickly respond to overwhelming stress to ensure cell survival.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas Periplásmicas/genética , Porinas/genética , Receptores Virais/genética , Serina Endopeptidases/genética , Fator sigma/genética , Adaptação Fisiológica/genética , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/deficiência , Viabilidade Microbiana , Modelos Moleculares , Mutação , Periplasma/genética , Periplasma/metabolismo , Porinas/química , Porinas/deficiência , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/química , Receptores Virais/deficiência , Serina Endopeptidases/deficiência , Fator sigma/metabolismo , Transdução de Sinais , Estresse Fisiológico
10.
Proc Natl Acad Sci U S A ; 113(31): 8717-22, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27439868

RESUMO

The assembly of ß-barrel proteins into membranes is mediated by an evolutionarily conserved machine. This process is poorly understood because no stable partially folded barrel substrates have been characterized. Here, we slowed the folding of the Escherichia coli ß-barrel protein, LptD, with its lipoprotein plug, LptE. We identified a late-stage intermediate in which LptD is folded around LptE, and both components interact with the two essential ß-barrel assembly machine (Bam) components, BamA and BamD. We propose a model in which BamA and BamD act in concert to catalyze folding, with the final step in the process involving closure of the ends of the barrel with release from the Bam components. Because BamD and LptE are both soluble proteins, the simplest model consistent with these findings is that barrel folding by the Bam complex begins in the periplasm at the membrane interface.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
11.
Proc Natl Acad Sci U S A ; 111(26): 9467-72, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24938785

RESUMO

The assembly of lipopolysaccharide (LPS) on the surface of Gram-negative bacterial cells is essential for their viability and is achieved by the seven-protein LPS transport (Lpt) pathway. The outer membrane (OM) lipoprotein LptE and the ß-barrel membrane protein LptD form a complex that assembles LPS into the outer leaflet of the OM. We report a crystal structure of the Escherichia coli OM lipoprotein LptE at 2.34 Å. The structure reveals homology to eukaryotic LPS-binding proteins and allowed for the prediction of an LPS-binding site, which was confirmed by genetic and biophysical experiments. Specific point mutations at this site lead to defects in OM biogenesis. We show that wild-type LptE disrupts LPS-LPS interactions in vitro and that these mutations decrease the ability of LptE to disaggregate LPS. Transmission electron microscopic imaging shows that LptE can disrupt LPS aggregates even at substoichiometric concentrations. We propose a model in which LptE functions as an LPS transfer protein in the OM translocon by disaggregating LPS during transport to allow for its insertion into the OM.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação/genética , Transporte Biológico/fisiologia , Catálise , Cristalização , Proteínas de Escherichia coli/genética , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/genética
12.
Antimicrob Agents Chemother ; 60(2): 845-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596941

RESUMO

Gram-negative bacteria provide a particular challenge to antibacterial drug discovery due to their cell envelope structure. Compound entry is impeded by the lipopolysaccharide (LPS) of the outer membrane (OM), and those molecules that overcome this barrier are often expelled by multidrug efflux pumps. Understanding how efflux and permeability affect the ability of a compound to reach its target is paramount to translating in vitro biochemical potency to cellular bioactivity. Herein, a suite of Pseudomonas aeruginosa strains were constructed in either a wild-type or efflux-null background in which mutations were engineered in LptD, the final protein involved in LPS transport to the OM. These mutants were demonstrated to be defective in LPS transport, resulting in compromised barrier function. Using isogenic strain sets harboring these newly created alleles, we were able to define the contributions of permeability and efflux to the intrinsic resistance of P. aeruginosa to a variety of antibiotics. These strains will be useful in the design and optimization of future antibiotics against Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/genética , Sequência de Aminoácidos , Transporte Biológico/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Microbiology (Reading) ; 161(11): 2087-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26315462

RESUMO

The rod-shaped enteric intracellular pathogen Shigella flexneri and other Shigella species are the causative agents of bacillary dysentery. S. flexneri are able to spread within the epithelial lining of the gut, resulting in lesion formation, cramps and bloody stools. The outer membrane protein IcsA is essential for this spreading process. IcsA is the initiator of an actin-based form of motility whereby it allows the formation of a filamentous actin 'tail' at the bacterial pole. Importantly, IcsA is specifically positioned at the bacterial pole such that this process occurs asymmetrically. The mechanism of IcsA polarity is not completely understood, but it appears to be a multifactorial process involving factors intrinsic to IcsA and other regulating factors. In this study, we further investigated IcsA polarization by its intramolecular N-terminal and central polar-targeting (PT) regions (nPT and cPT regions, respectively). The results obtained support a role in polar localization for the cPT region and contend the role of the nPT region. We identified single IcsA residues that have measurable impacts on IcsA polarity augmentation, resulting in decreased S. flexneri sprading efficiency. Intriguingly, regions and residues involved in PT clustered around a highly conserved motif which may provide a functional scaffold for polarity-augmenting residues. How these results fit with the current model of IcsA polarity determination is discussed.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Shigella flexneri/química , Shigella flexneri/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Sequência Conservada , Análise Mutacional de DNA , Proteínas de Ligação a DNA/química , Transporte Proteico , Shigella flexneri/genética , Fatores de Transcrição/química
15.
mBio ; 15(2): e0303923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193657

RESUMO

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bactérias Gram-Negativas/metabolismo , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo
16.
J Bacteriol ; 195(6): 1327-34, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23316047

RESUMO

Lipopolysaccharide (LPS) is the major outer leaflet constituent of the Gram-negative outer membrane (OM) bilayer. A bipartite protein complex of LptD and LptE assembles LPS into the OM. It has been established that LptE assists folding and assembly of its ß-barrel partner LptD, yet reported biochemical evidence suggested additional LptE functions. Here, we isolated dominant negative lptE mutations, seeking to inform these functions. The lptE14 mutation increased OM permeability to erythromycin, even when the wild-type lptE gene was present. We show that the lptE14 mutation does not cause a defect in either LptD assembly or LPS export. A spontaneous IS1 insertion in secA suppressed lptE14 erythromycin sensitivity by removing the C-terminal SecB-binding domain of SecA. While this suppressor mutation broadly impeded SecB-dependent secretion of preproteins, we show that suppression was a direct and specific consequence of reduced LptD levels in the OM. We suggest that lptE14 causes poor plugging of the LptD ß barrel and that a reduction of ineffectively plugged LptD-LptE14 complexes in the OM decreases permeability to erythromycin. Hence, lptE14 supports a proposed plug-and-barrel LptE-LptD arrangement.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Eritromicina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA , Transposases/genética
17.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986794

RESUMO

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.

18.
Microbiology (Reading) ; 158(Pt 7): 1874-1883, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22516224

RESUMO

The IcsA autotransporter protein is a major virulence factor of the human intracellular pathogen Shigella flexneri. IcsA is distributed at the poles in the outer membrane (OM) of S. flexneri and interacts with components of the host actin-polymerization machinery to facilitate intracellular actin-based motility and subsequent cell-to-cell spreading of the bacterium. We sought to characterize the biochemical properties of IcsA in the bacterial OM. Chemical cross-linking data suggested that IcsA exists in a complex in the OM. Furthermore, reciprocal co-immunoprecipitation of differentially epitope-tagged IcsA proteins indicated that IcsA is able to self-associate. The identification of IcsA linker-insertion mutants that were negatively dominant provided genetic evidence of IcsA-IcsA interactions. From these results, we propose a model whereby IcsA self-association facilitates efficient actin-based motility.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Multimerização Proteica , Fatores de Transcrição/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Imunoprecipitação , Ligação Proteica , Shigella flexneri/fisiologia , Fatores de Virulência/metabolismo
19.
mBio ; 13(3): e0075722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35695460

RESUMO

The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly. IMPORTANCE Gram-negative bacteria have an outer membrane, which acts as a protective barrier and excludes many antibiotics. The limited number of antibiotics active against Gram-negative bacteria, along with rising rates of antibiotic resistance, highlights the need for efficient antibiotic discovery efforts. Unfortunately, finding the target of lead compounds, especially ones targeting outer membrane construction, remains difficult. The hub of outer membrane construction is the lipoprotein biogenesis pathway. We show that defects in this pathway result in a signature cellular response that can be used to quickly and accurately validate pathway inhibitors. Indeed, we found that MAC13243, a compound previously proposed to target outer membrane lipoprotein biogenesis, does not fit the signature, and we show that it instead targets an entirely different cellular pathway. Our findings offer a streamlined approach to the discovery and validation of lead antibiotics against a conserved and essential pathway in Gram-negative bacteria.


Assuntos
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
20.
FASEB J ; 23(3): 731-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18971260

RESUMO

The pneumococcal histidine triad (Pht) proteins are a recently recognized family of surface proteins, comprising 4 members: PhtA, PhtB, PhtD, and PhtE. They are being promoted for inclusion in a multicomponent pneumococcal protein vaccine currently under development, but to date, their biological functions and their relative contributions to pathogenesis have not been clarified. In this study, the involvement of these proteins in pneumococcal virulence was investigated in murine models of sepsis and pneumonia by using defined, nonpolar mutants of the respective genes in Streptococcus pneumoniae D39. In either challenge model, mutagenesis of all 4 genes was required to completely abolish virulence relative to the wild-type, suggesting significant functional redundancy among Pht proteins. The in vivo expression of pht genes was significantly up-regulated in the nasopharynx and lungs compared with blood. We provide unequivocal molecular evidence for Zn(2+)-dependent, AdcR-mediated, regulation of pht gene expression by real-time reverse transcriptase-polymerase chain reaction, Western blotting, and electrophoretic mobility-shift assays. We also present the first direct evidence for the biological function of this protein family by demonstrating that Pht proteins are required for inhibition of complement deposition on the pneumococcal surface through the recruitment of complement factor H.


Assuntos
Proteínas de Bactérias/metabolismo , Fator H do Complemento/metabolismo , Hidrolases/metabolismo , Proteínas Repressoras/metabolismo , Streptococcus pneumoniae , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrolases/genética , Camundongos , Mutação , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Ligação Proteica , Proteínas Repressoras/genética , Sepse/imunologia , Sepse/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Regulação para Cima , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA