Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 167(2): 433-443.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667685

RESUMO

While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Adulto , Feminino , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Ativação de Macrófagos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/imunologia , Análise Serial de Proteínas , Receptores de IgG/imunologia , Adulto Jovem
2.
J Infect Dis ; 222(12): 2093-2102, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32060529

RESUMO

BACKGROUND: Mycobacterium tuberculosis remains a global health problem and clinical management is complicated by difficulty in discriminating between latent infection and active disease. While M. tuberculosis-reactive antibody levels are heterogeneous, studies suggest that levels of IgG glycosylation differ between disease states. Here we extend this observation across antibody domains and M. tuberculosis specificities to define changes with the greatest resolving power. METHODS: Capillary electrophoretic glycan analysis was performed on bulk non-antigen-specific IgG, bulk Fc domain, bulk Fab domain, and purified protein derivative (PPD)- and Ag85A-specific IgG from subjects with latent (n = 10) and active (n = 20) tuberculosis. PPD-specific isotype/subclass, PPD-specific antibody-dependent phagocytosis, cellular cytotoxicity, and natural killer cell activation were assessed. Discriminatory potentials of antibody features were evaluated individually and by multivariate analysis. RESULTS: Parallel profiling of whole, Fc, and Fab domain-specific IgG glycosylation pointed to enhanced differential glycosylation on the Fc domain. Differential glycosylation was observed across antigen-specific antibody populations. Multivariate modeling highlighted Fc domain glycan species as the top discriminatory features, with combined PPD IgG titers and Fc domain glycans providing the highest classification accuracy. CONCLUSIONS: Differential glycosylation occurs preferentially on the Fc domain, providing significant discriminatory power between different states of M. tuberculosis infection and disease.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/química , Tuberculose Latente/diagnóstico , Tuberculose/diagnóstico , Aciltransferases/análise , Adolescente , Adulto , Idoso , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Eletroforese Capilar , Feminino , Glicosilação , Humanos , Imunoglobulina G/análise , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Polissacarídeos/análise , Tuberculina/análise
3.
J Immunol ; 196(1): 357-64, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26573837

RESUMO

Mycobacterium tuberculosis commonly causes persistent or chronic infection, despite the development of Ag-specific CD4 T cell responses. We hypothesized that M. tuberculosis evades elimination by CD4 T cell responses by manipulating MHC class II Ag presentation and CD4 T cell activation and tested this hypothesis by comparing activation of Ag85B-specific CD4 T cell responses to M. tuberculosis and M. bovis bacillus Calmette-Guérin (BCG) Pasteur in vivo and in vitro. We found that, although M. tuberculosis persists in lungs of immunocompetent mice, M. bovis BCG is cleared, and clearance is T cell dependent. We further discovered that M. tuberculosis-infected macrophages and dendritic cells activate Ag85B-specific CD4 T cells less efficiently and less effectively than do BCG-infected cells, in vivo and in vitro, despite higher production and secretion of Ag85B by M. tuberculosis. During BCG infection, activation of Ag85B-specific CD4 T cells requires fewer infected dendritic cells and fewer Ag-producing bacteria than during M. tuberculosis infection. When dendritic cells containing equivalent numbers of M. tuberculosis or BCG were transferred to mice, BCG-infected cells activated proliferation of more Ag85B-specific CD4 T cells than did M. tuberculosis-infected cells. Differences in Ag85B-specific CD4 T cell activation were attributable to differential Ag presentation rather than differential expression of costimulatory or inhibitory molecules. These data indicate that suboptimal Ag presentation contributes to persistent infection and that limiting Ag presentation is a virulence property of M. tuberculosis.


Assuntos
Aciltransferases/imunologia , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Células Th1/imunologia , Animais , Proliferação de Células , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/transplante , Pulmão/imunologia , Pulmão/microbiologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fatores de Virulência/imunologia
4.
Nat Microbiol ; 9(9): 2369-2382, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39174703

RESUMO

Mounting evidence indicates that antibodies can contribute towards control of tuberculosis (TB). However, the underlying mechanisms of humoral immune protection and whether antibodies can be exploited in therapeutic strategies to combat TB are relatively understudied. Here we engineered the receptor-binding Fc (fragment crystallizable) region of an antibody recognizing the Mycobacterium tuberculosis (Mtb) capsule, to define antibody Fc-mediated mechanism(s) of Mtb restriction. We generated 52 Fc variants that either promote or inhibit specific antibody effector functions, rationally building antibodies with enhanced capacity to promote Mtb restriction in a human whole-blood model of infection. While there is likely no singular Fc profile that universally drives control of Mtb, here we found that several Fc-engineered antibodies drove Mtb restriction in a neutrophil-dependent manner. Single-cell RNA sequencing analysis showed that a restrictive Fc-engineered antibody promoted neutrophil survival and expression of cell-intrinsic antimicrobial programs. These data show the potential of Fc-engineered antibodies as therapeutics able to harness the protective functions of neutrophils to promote control of TB.


Assuntos
Anticorpos Antibacterianos , Fragmentos Fc das Imunoglobulinas , Mycobacterium tuberculosis , Neutrófilos , Tuberculose , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/genética , Neutrófilos/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Tuberculose/imunologia , Tuberculose/microbiologia , Anticorpos Antibacterianos/imunologia , Engenharia de Proteínas , Animais , Receptores Fc/imunologia , Receptores Fc/metabolismo , Receptores Fc/genética , Camundongos
5.
bioRxiv ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39416184

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death by an infectious disease globally, with no efficacious vaccine. Antibodies are implicated in Mtb control, but the mechanisms of antibody action remain poorly understood. We assembled a library of TB monoclonal antibodies (mAb) and screened for the ability to restrict Mtb in mice, identifying protective antibodies targeting known and novel antigens. To dissect the mechanism of mAb-mediated Mtb restriction, we optimized a protective lipoarabinomannan-specific mAb through Fc-swapping. In vivo analysis of these Fc-variants revealed a critical role for Fc-effector function in Mtb restriction. Restrictive Fc-variants altered distribution of Mtb across innate immune cells. Single-cell transcriptomics highlighted distinctly activated molecular circuitry within innate immune cell subpopulations, highlighting early activation of neutrophils as a key signature of mAb-mediated Mtb restriction. Therefore, improved antibody-mediated restriction of Mtb is associated with reorganization of the tissue-level immune response to infection and depends on the collaboration of antibody Fab and Fc.

6.
Curr Opin Biotechnol ; 78: 102818, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242952

RESUMO

The COVID-19 pandemic demonstrated that monoclonal antibodies can be deployed faster than antimicrobials and vaccines. However, the majority of mAbs treat cancer and autoimmune diseases, whereas a minority treat infection. This is in part because targeting a single antigen by the antibody Fab domain is insufficient to stop the dynamic microbial life cycle. Thus, finding the 'right' antigens remains the focus of intense investigations. Equally important is the antibody-Fc domain that has the capacity to induce immune responses that enhance neutralization, and limit pathology and transmission. While Fc-effector functions have been less deeply studied, conceptual and technical advances reveal previously underappreciated antibody potential to combat diseases from microbes difficult to address with current diagnostics, therapeutics, and vaccines, including S. aureus, P. aeruginosa, P. falciparum, and M. tuberculosis. What is learned about engineering antibodies for these challenging organisms will enhance our approach to new and emerging infectious diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Anticorpos Monoclonais/uso terapêutico , Staphylococcus aureus , Pandemias , Antígenos , Doenças Transmissíveis/terapia , Anticorpos Neutralizantes
7.
Front Immunol ; 12: 679973, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290702

RESUMO

With an estimated 25% of the global population infected with Mycobacterium tuberculosis (Mtb), tuberculosis (TB) remains a leading cause of death by infectious diseases. Humoral immunity following TB treatment is largely uncharacterized, and antibody profiling could provide insights into disease resolution. Here we focused on the distinctive TB-specific serum antibody features in active TB disease (ATB) and compared them with latent TB infection (LTBI) or treated ATB (txATB). As expected, di-galactosylated glycan structures (lacking sialic acid) found on IgG-Fc differentiated LTBI from ATB, but also discriminated txATB from ATB. Moreover, TB-specific IgG4 emerged as a novel antibody feature that correlated with active disease, elevated in ATB, but significantly diminished after therapy. These findings highlight 2 novel TB-specific antibody changes that track with the resolution of TB and may provide key insights to guide TB therapy.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Anticorpos Antibacterianos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Feminino , Glicosilação , Interações Hospedeiro-Patógeno/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Tuberculose Latente/imunologia , Masculino , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Fagocitose/imunologia , Polissacarídeos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
8.
Front Immunol ; 12: 729186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630406

RESUMO

South Africa has the highest prevalence of HIV and tuberculosis (TB) co-infection globally. Recurrent TB, caused by relapse or reinfection, makes up the majority of TB cases in South Africa, and HIV infected individuals have a greater likelihood of developing recurrent TB. Given that TB remains a leading cause of death for HIV infected individuals, and correlates of TB recurrence protection/risk have yet to be defined, here we sought to understand the antibody associated mechanisms of recurrent TB by investigating the humoral response in a longitudinal cohort of HIV co-infected individuals previously treated for TB with and without recurrent disease during follow-up, in order to identify antibody correlates of protection between individuals who do not have recurrent TB and individuals who do. We used a high-throughput, "systems serology" approach to profile biophysical and functional characteristics of antibodies targeting antigens from Mycobacterium tuberculosis (Mtb). Differences in antibody profiles were noted between individuals with and without recurrent TB, albeit these differences were largely observed close to the time of re-diagnosis. Individuals with recurrent TB had decreased Mtb-antigen specific IgG3 titers, but not other IgG subclasses or IgA, compared to control individuals. These data point to a potential role for Mtb-specific IgG3 responses as biomarkers or direct mediators of protective immunity against Mtb recurrence.


Assuntos
Anticorpos Antibacterianos/sangue , Imunidade Humoral , Imunoglobulina G/sangue , Mycobacterium tuberculosis/imunologia , Reinfecção , Tuberculose Pulmonar/microbiologia , Biomarcadores/sangue , Coinfecção , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/patogenicidade , Valor Preditivo dos Testes , Testes Sorológicos , África do Sul/epidemiologia , Células THP-1 , Fatores de Tempo , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/imunologia
9.
Nat Med ; 25(7): 1175, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31222179

RESUMO

In the version of this article originally published, there was an error in the abstract. The word disease should not have been included in the sentence "These individuals were highly exposed to Mtb but tested negative disease by IFN-γ release assay and tuberculin skin test, 'resisting' development of classic LTBI". The sentence should have been "These individuals were highly exposed to Mtb but tested negative by IFN-γ release assay and tuberculin skin test, 'resisting' development of classic LTBI." The error has been corrected in the HTML and PDF versions of this article.

10.
Nat Med ; 25(6): 977-987, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110348

RESUMO

Exposure to Mycobacterium tuberculosis (Mtb) results in heterogeneous clinical outcomes including primary progressive tuberculosis and latent Mtb infection (LTBI). Mtb infection is identified using the tuberculin skin test and interferon-γ (IFN-γ) release assay IGRA, and a positive result may prompt chemoprophylaxis to prevent progression to tuberculosis. In the present study, we report on a cohort of Ugandan individuals who were household contacts of patients with TB. These individuals were highly exposed to Mtb but tested negative disease by IFN-γ release assay and tuberculin skin test, 'resisting' development of classic LTBI. We show that 'resisters' possess IgM, class-switched IgG antibody responses and non-IFN-γ T cell responses to the Mtb-specific proteins ESAT6 and CFP10, immunologic evidence of exposure to Mtb. Compared to subjects with classic LTBI, 'resisters' display enhanced antibody avidity and distinct Mtb-specific IgG Fc profiles. These data reveal a distinctive adaptive immune profile among Mtb-exposed subjects, supporting an expanded definition of the host response to Mtb exposure, with implications for public health and the design of clinical trials.


Assuntos
Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/imunologia , Criança , Estudos de Coortes , Feminino , Humanos , Interferon gama/imunologia , Testes de Liberação de Interferon-gama , Masculino , Teste Tuberculínico , Uganda , Adulto Jovem
11.
Cell Host Microbe ; 19(1): 44-54, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764596

RESUMO

Persistence of Mycobacterium tuberculosis results from bacterial strategies that manipulate host adaptive immune responses. Infected dendritic cells (DCs) transport M. tuberculosis to local lymph nodes but activate CD4 T cells poorly, suggesting bacterial manipulation of antigen presentation. However, M. tuberculosis antigens are also exported from infected DCs and taken up and presented by uninfected DCs, possibly overcoming this blockade of antigen presentation by infected cells. Here we show that the first stage of this antigen transfer, antigen export, benefits M. tuberculosis by diverting bacterial proteins from the antigen presentation pathway. Kinesin-2 is required for antigen export and depletion of this microtubule-based motor increases activation of antigen-specific CD4 T cells by infected cells and improves control of intracellular infection. Thus, although antigen transfer enables presentation by bystander cells, it does not compensate for reduced antigen presentation by infected cells and represents a bacterial strategy for CD4 T cell evasion.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Antígenos de Bactérias/genética , Células Dendríticas/imunologia , Humanos , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transporte Proteico , Tuberculose/metabolismo , Tuberculose/microbiologia
12.
Nat Microbiol ; 2: 16232, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27918526

RESUMO

Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Ativação Linfocitária , Mycobacterium tuberculosis/imunologia , Animais , Proteínas de Bactérias/genética , Células Dendríticas/imunologia , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Inativação de Genes , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Tuberculose/microbiologia , Tuberculose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA