Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(26): 6213-6216, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34942094

RESUMO

This year's Nobel Prize in Physiology or Medicine was awarded to David Julius and Ardem Patapoutian for "explaining the molecular basis for sensing heat, cold and mechanical force." Their findings capped off a scientific quest to identify the mechanisms within the somatosensory system mediating the detection of internal and external environments.


Assuntos
Canais Iônicos/metabolismo , Sensação/fisiologia , Animais , Fenômenos Biomecânicos , Capsaicina/farmacologia , Humanos , Prêmio Nobel , Tato/fisiologia
2.
Annu Rev Cell Dev Biol ; 36: 315-338, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32897760

RESUMO

Thriving in times of resource scarcity requires an incredible flexibility of behavioral, physiological, cellular, and molecular functions that must change within a relatively short time. Hibernation is a collection of physiological strategies that allows animals to inhabit inhospitable environments, where they experience extreme thermal challenges and scarcity of food and water. Many different kinds of animals employ hibernation, and there is a spectrum of hibernation phenotypes. Here, we focus on obligatory mammalian hibernators to identify the unique challenges they face and the adaptations that allow hibernators to overcome them. This includes the cellular and molecular strategies used to combat low environmental and body temperatures and lack of food and water. We discuss metabolic, neuronal, and hormonal cues that regulate hibernation and how they are thought to be coordinated by internal clocks. Last, we touch on questions that are left to be addressed in the field of hibernation research. Studies from the last century and more recent work reveal that hibernation is not simply a passive reduction in body temperature and vital parameters but rather an active process seasonally regulated at the molecular, cellular, and organismal levels.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Hibernação/fisiologia , Animais , Ritmo Circadiano/fisiologia , Humanos , Memória/fisiologia , Sono/fisiologia
3.
Cell ; 153(7): 1494-509, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791178

RESUMO

Most available information on endoplasmic reticulum (ER)-plasma membrane (PM) contacts in cells of higher eukaryotes concerns proteins implicated in the regulation of Ca(2+) entry. However, growing evidence suggests that such contacts play more general roles in cell physiology, pointing to the existence of additionally ubiquitously expressed ER-PM tethers. Here, we show that the three extended synaptotagmins (E-Syts) are ER proteins that participate in such tethering function via C2 domain-dependent interactions with the PM that require PI(4,5)P2 in the case of E-Syt2 and E-Syt3 and also elevation of cytosolic Ca(2+) in the case of E-Syt1. As they form heteromeric complexes, the E-Syts confer cytosolic Ca(2+) regulation to ER-PM contact formation. E-Syts-dependent contacts, however, are not required for store-operated Ca(2+) entry. Thus, the ER-PM tethering function of the E-Syts (tricalbins in yeast) mediates the formation of ER-PM contacts sites, which are functionally distinct from those mediated by STIM1 and Orai1.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinaptotagminas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/ultraestrutura , Retículo Endoplasmático/química , Retículo Endoplasmático/ultraestrutura , Células HeLa , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Sinaptotagminas/química , Sinaptotagminas/genética , Leveduras/citologia , Leveduras/metabolismo
4.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982152

RESUMO

Hibernators thrive under harsh environmental conditions instead of initiating canonical behavioral and physiological responses to promote survival. Although the physiological changes that occur during hibernation have been comprehensively researched, the role of the nervous system in this process remains relatively underexplored. In this Review, we adopt the perspective that the nervous system plays an active, essential role in facilitating and supporting hibernation. Accumulating evidence strongly suggests that the hypothalamus enters a quiescent state in which powerful drives to thermoregulate, eat and drink are suppressed. Similarly, cardiovascular and pulmonary reflexes originating in the brainstem are altered to permit the profoundly slow heart and breathing rates observed during torpor. The mechanisms underlying these changes to the hypothalamus and brainstem are not currently known, but several neuromodulatory systems have been implicated in the induction and maintenance of hibernation. The intersection of these findings with modern neuroscience approaches, such as optogenetics and in vivo calcium imaging, has opened several exciting avenues for hibernation research.


Assuntos
Hibernação , Torpor , Tronco Encefálico , Coração , Hibernação/fisiologia , Torpor/fisiologia
5.
Proc Natl Acad Sci U S A ; 116(35): 17547-17555, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413193

RESUMO

Tactile information is detected by thermoreceptors and mechanoreceptors in the skin and integrated by the central nervous system to produce the perception of somatosensation. Here we investigate the mechanism by which thermal and mechanical stimuli begin to interact and report that it is achieved by the mechanotransduction apparatus in cutaneous mechanoreceptors. We show that moderate cold potentiates the conversion of mechanical force into excitatory current in all types of mechanoreceptors from mice and tactile-specialist birds. This effect is observed at the level of mechanosensitive Piezo2 channels and can be replicated in heterologous systems using Piezo2 orthologs from different species. The cold sensitivity of Piezo2 is dependent on its blade domains, which render the channel resistant to cold-induced perturbations of the physical properties of the plasma membrane and give rise to a different mechanism of mechanical activation than that of Piezo1. Our data reveal that Piezo2 is an evolutionarily conserved mediator of thermal-tactile integration in cutaneous mechanoreceptors.


Assuntos
Sinais (Psicologia) , Canais Iônicos/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Potenciais de Ação , Animais , Membrana Celular/metabolismo , Humanos , Canais Iônicos/química , Mecanorreceptores/química , Camundongos , Especificidade de Órgãos , Ligação Proteica , Relação Estrutura-Atividade , Temperatura , Vertebrados
6.
Proc Natl Acad Sci U S A ; 115(51): E12091-E12100, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30463955

RESUMO

Atopic dermatitis (AD) is the most common skin disease in children. It is characterized by relapsing inflammation, skin-barrier defects, and intractable itch. However, the pathophysiology of itch in AD remains enigmatic. Here, we examine the contribution of Tmem79, an orphan transmembrane protein linked to AD in both mice and humans. We show that Tmem79 is expressed by both keratinocytes and sensory neurons, but that loss of keratinocytic Tmem79 is sufficient to elicit robust scratching. Tmem79-/- mice demonstrate an accumulation of dermal mast cells, which are diminished following chronic treatment with cyclooxygenase inhibitors and an EP3 receptor antagonist. In Tmem79-/- mice, mast cell degranulation produces histaminergic itch in a histamine receptor 1/histamine receptor 4 (H4R/H1R)-dependent manner that may involve activation of TRPV1- afferents. TMEM79 has limited sequence homology to a family of microsomal glutathione transferases and confers protection from cellular accumulation of damaging reactive species, and may thus play a role in regulating oxidative stress. In any case, mechanistic insights from this model suggest that therapeutics targeting PGE2 and/or H1R/H4R histaminergic signaling pathways may represent useful avenues to treat Tmem79-associated AD itch. Our findings suggest that individuals with mutations in Tmem79 develop AD due to the loss of protection from oxidative stress.


Assuntos
Dermatite Atópica/genética , Proteínas de Membrana/fisiologia , Prurido/genética , Animais , Deleção de Genes , Células HEK293 , Humanos , Queratinócitos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Estresse Oxidativo/genética , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 114(49): 13036-13041, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29109250

RESUMO

Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.


Assuntos
Proteínas Aviárias/genética , Bico/fisiologia , Patos/fisiologia , Mecanorreceptores/metabolismo , Percepção do Tato/fisiologia , Tato/fisiologia , Sequência de Aminoácidos , Animais , Proteínas Aviárias/antagonistas & inibidores , Proteínas Aviárias/metabolismo , Bico/citologia , Bico/inervação , Galinhas , Clonagem Molecular , Embrião não Mamífero , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Canais Iônicos/metabolismo , Cinética , Mecanorreceptores/citologia , Mecanotransdução Celular , Camundongos , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
8.
Blood ; 130(16): 1845-1856, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-28716860

RESUMO

Mutations in PIEZO1 are the primary cause of hereditary xerocytosis, a clinically heterogeneous, dominantly inherited disorder of erythrocyte dehydration. We used next-generation sequencing-based techniques to identify PIEZO1 mutations in individuals from 9 kindreds referred with suspected hereditary xerocytosis (HX) and/or undiagnosed congenital hemolytic anemia. Mutations were primarily found in the highly conserved, COOH-terminal pore-region domain. Several mutations were novel and demonstrated ethnic specificity. We characterized these mutations using genomic-, bioinformatic-, cell biology-, and physiology-based functional assays. For these studies, we created a novel, cell-based in vivo system for study of wild-type and variant PIEZO1 membrane protein expression, trafficking, and electrophysiology in a rigorous manner. Previous reports have indicated HX-associated PIEZO1 variants exhibit a partial gain-of-function phenotype with generation of mechanically activated currents that inactivate more slowly than wild type, indicating that increased cation permeability may lead to dehydration of PIEZO1-mutant HX erythrocytes. In addition to delayed channel inactivation, we found additional alterations in mutant PIEZO1 channel kinetics, differences in response to osmotic stress, and altered membrane protein trafficking, predicting variant alleles that worsen or ameliorate erythrocyte hydration. These results extend the genetic heterogeneity observed in HX and indicate that various pathophysiologic mechanisms contribute to the HX phenotype.


Assuntos
Anemia Hemolítica Congênita/genética , Hidropisia Fetal/genética , Canais Iônicos/genética , Adulto , Anemia Hemolítica Congênita/metabolismo , Criança , Estudos de Coortes , Análise Mutacional de DNA , Desidratação/genética , Desidratação/metabolismo , Eritrócitos/metabolismo , Família , Feminino , Células HEK293 , Humanos , Hidropisia Fetal/metabolismo , Mutação INDEL , Recém-Nascido , Canais Iônicos/metabolismo , Cinética , Masculino , Mutação de Sentido Incorreto , Pressão Osmótica/fisiologia
9.
Proc Natl Acad Sci U S A ; 113(40): 11342-11347, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27638213

RESUMO

The ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals. For example, ground squirrels and camels can tolerate temperatures more than 40 °C better than many other mammalian species, yet a molecular mechanism subserving this ability is unclear. Transient receptor potential vanilloid 1 (TRPV1) is a polymodal ion channel involved in the detection of noxious thermal and chemical stimuli by primary afferents of the somatosensory system. Here, we show that thirteen-lined ground squirrels (Ictidomys tridecemlineatus) and Bactrian camels (Camelus ferus) express TRPV1 orthologs with dramatically reduced temperature sensitivity. The loss of sensitivity is restricted to temperature and does not affect capsaicin or acid responses, thereby maintaining a role for TRPV1 as a detector of noxious chemical cues. We show that heat sensitivity can be reengineered in both TRPV1 orthologs by a single amino acid substitution in the N-terminal ankyrin-repeat domain. Conversely, reciprocal mutations suppress heat sensitivity of rat TRPV1, supporting functional conservation of the residues. Our studies suggest that squirrels and camels co-opt a common molecular strategy to adapt to hot environments by suppressing the efficiency of TRPV1-mediated heat detection at the level of somatosensory neurons. Such adaptation is possible because of the remarkable functional flexibility of the TRPV1 molecule, which can undergo profound tuning at the minimal cost of a single amino acid change.


Assuntos
Camelus/fisiologia , Sciuridae/fisiologia , Canais de Cátion TRPV/metabolismo , Termotolerância , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Repetição de Anquirina , Capsaicina/farmacologia , Sequência Conservada , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Alinhamento de Sequência , Canais de Cátion TRPV/química , Termotolerância/efeitos dos fármacos , Xenopus/metabolismo
10.
Pflugers Arch ; 470(5): 745-759, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29484488

RESUMO

The ability to sense temperature is crucial for the survival of an organism. Temperature influences all biological operations, from rates of metabolic reactions to protein folding, and broad behavioral functions, from feeding to breeding, and other seasonal activities. The evolution of specialized thermosensory adaptations has enabled animals to inhabit extreme temperature niches and to perform specific temperature-dependent behaviors. The function of sensory neurons depends on the participation of various types of ion channels. Each of the channels involved in neuronal excitability, whether through the generation of receptor potential, action potential, or the maintenance of the resting potential have temperature-dependent properties that can tune the neuron's response to temperature stimuli. Since the function of all proteins is affected by temperature, animals need adaptations not only for detecting different temperatures, but also for maintaining sensory ability at different temperatures. A full understanding of the molecular mechanism of thermosensation requires an investigation of all channel types at each step of thermosensory transduction. A fruitful avenue of investigation into how different molecules can contribute to the fine-tuning of temperature sensitivity is to study the specialized adaptations of various species. Given the diversity of molecular participants at each stage of sensory transduction, animals have a toolkit of channels at their disposal to adapt their thermosensitivity to their particular habitats or behavioral circumstances.


Assuntos
Regulação da Temperatura Corporal , Sensação Térmica , Canais de Potencial de Receptor Transitório/metabolismo , Potenciais de Ação , Animais , Humanos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transmissão Sináptica , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
11.
Proc Natl Acad Sci U S A ; 112(5): 1607-12, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605929

RESUMO

Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.


Assuntos
Hibernação , Canais Iônicos/fisiologia , Proteínas Mitocondriais/fisiologia , Neurônios/metabolismo , Termogênese , Animais , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Sciuridae , Proteína Desacopladora 1
12.
Physiology (Bethesda) ; 31(3): 193-200, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27053733

RESUMO

Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Mecanotransdução Celular/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Vertebrados , Animais , Humanos
13.
Nature ; 476(7358): 88-91, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814281

RESUMO

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their sanguinary lifestyle. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hotspots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons and pit vipers are capable of detecting infrared radiation. In each case, infrared signals are detected by trigeminal nerve fibres that innervate specialized pit organs on the animal's face. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species-specific or cell-type-specific manner. Previously, we have shown that snakes co-opt a non-heat-sensitive channel, vertebrate TRPA1 (transient receptor potential cation channel A1), to produce an infrared detector. Here we show that vampire bats tune a channel that is already heat-sensitive, TRPV1, by lowering its thermal activation threshold to about 30 °C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated carboxy-terminal cytoplasmic domain. These splicing events occur exclusively in trigeminal ganglia, and not in dorsal root ganglia, thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat Trpv1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs and moles), supporting a close phylogenetic relationship with bats. These findings reveal a novel molecular mechanism for physiological tuning of thermosensory nerve fibres.


Assuntos
Processamento Alternativo/genética , Quirópteros/genética , Quirópteros/fisiologia , Raios Infravermelhos , Sensação/fisiologia , Canais de Cátion TRPV/genética , Gânglio Trigeminal/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Quirópteros/anatomia & histologia , Quirópteros/classificação , Face/anatomia & histologia , Face/inervação , Comportamento Alimentar/fisiologia , Células HEK293 , Temperatura Alta , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Comportamento Predatório/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(41): 14941-6, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25246547

RESUMO

Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.


Assuntos
Patos/fisiologia , Comportamento Alimentar , Mecanotransdução Celular , Neurônios/fisiologia , Tato/fisiologia , Animais , Regulação para Baixo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Limiar Sensorial , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/metabolismo , Termorreceptores/metabolismo , Gânglio Trigeminal/fisiologia , Regulação para Cima
15.
Nature ; 464(7291): 1006-11, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20228791

RESUMO

Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a 'thermal image' of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibres of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibres that innervate the pit organ. TRPA1 orthologues from pit-bearing snakes (vipers, pythons and boas) are the most heat-sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of transient receptor potential (TRP) channels as thermosensors in the vertebrate nervous system.


Assuntos
Crotalus/fisiologia , Temperatura Alta , Raios Infravermelhos , Transdução de Sinal Luminoso/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Boidae/genética , Boidae/metabolismo , Galinhas , Clonagem Molecular , Crotalus/anatomia & histologia , Crotalus/genética , Crotalus/metabolismo , Dados de Sequência Molecular , Comportamento Predatório/fisiologia , Comportamento Predatório/efeitos da radiação , Ratos , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/genética , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
16.
J Physiol ; 593(16): 3483-91, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25433072

RESUMO

Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Animais , Humanos , Canais Iônicos/fisiologia
17.
J Biol Chem ; 289(46): 31673-31681, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25305018

RESUMO

Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature.


Assuntos
Canais Iônicos/fisiologia , Sequência de Aminoácidos , Anemia Hemolítica Congênita/genética , Animais , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Humanos , Hidropisia Fetal/genética , Canais Iônicos/química , Camundongos , Dados de Sequência Molecular , Mutação , Neurônios Aferentes/metabolismo , Osteoclastos/citologia , Filogenia , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
18.
Curr Top Membr ; 74: 89-112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25366234

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes. Some of these proposed functions remain controversial, while others have gathered considerable experimental support. A truly polymodal ion channel, TRPA1 is activated by various stimuli, including electrophilic chemicals, oxygen, temperature, and mechanical force, yet the molecular mechanism of TRPA1 gating remains obscure. In this review, we discuss recent advances in the understanding of TRPA1 physiology, pharmacology, and molecular function.


Assuntos
Sensação Térmica , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Canais de Potencial de Receptor Transitório/química
19.
Curr Top Membr ; 74: 113-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25366235

RESUMO

At normal body temperature, the two-pore potassium channels TREK-1 (K2P2.1/KCNK2), TREK-2 (K2P10.1/KCNK10), and TRAAK (K2P4.1/KCNK2) regulate cellular excitability by providing voltage-independent leak of potassium. Heat dramatically potentiates K2P channel activity and further affects excitation. This review focuses on the current understanding of the physiological role of heat-activated K2P current, and discusses the molecular mechanism of temperature gating in TREK-1, TREK-2, and TRAAK.


Assuntos
Canais de Potássio/metabolismo , Sensação Térmica , Animais , Ativação do Canal Iônico , Fenômenos Mecânicos , Canais de Potássio/química
20.
Proc Natl Acad Sci U S A ; 108(46): E1184-91, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21930928

RESUMO

Transient receptor potential (TRP) channels are polymodal signal detectors that respond to a wide array of physical and chemical stimuli, making them important components of sensory systems in both vertebrate and invertebrate organisms. Mammalian TRPA1 channels are activated by chemically reactive irritants, whereas snake and Drosophila TRPA1 orthologs are preferentially activated by heat. By comparing human and rattlesnake TRPA1 channels, we have identified two portable heat-sensitive modules within the ankyrin repeat-rich aminoterminal cytoplasmic domain of the snake ortholog. Chimeric channel studies further demonstrate that sensitivity to chemical stimuli and modulation by intracellular calcium also localize to the N-terminal ankyrin repeat-rich domain, identifying this region as an integrator of diverse physiological signals that regulate sensory neuron excitability. These findings provide a framework for understanding how restricted changes in TRPA1 sequence account for evolution of physiologically diverse channels, also identifying portable modules that specify thermosensitivity.


Assuntos
Proteínas de Drosophila/química , Canais de Cátion TRPC/química , Canais de Potencial de Receptor Transitório/química , Animais , Crotalus , Citoplasma/metabolismo , Dimerização , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Eletrofisiologia/métodos , Temperatura Alta , Humanos , Canais Iônicos , Oócitos/metabolismo , Mutação Puntual , Estrutura Terciária de Proteína , RNA Complementar/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Xenopus , Xenopus laevis/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA