RESUMO
Pemphigus vulgaris (PV) is a potentially lethal autoimmune mucocutaneous blistering disease characterized by binding of IgG autoantibodies (AuAbs) to keratinocytes (KCs). In addition to AuAbs against adhesion molecules desmogleins 1 and 3, PV patients also produce an AuAb against the M3 muscarinic acetylcholine (ACh) receptor (M3AR) that plays an important role in regulation of vital functions of KCs upon binding endogenous ACh. This anti-M3AR AuAb is pathogenic because its adsorption eliminates the acantholytic activity of PV IgG; however, the molecular mechanism of its action is unclear. In the present study, we sought to elucidate the mode of immunopharmacologic action of the anti-M3AR AuAb in PV. Short-term exposures of cultured KCs to PV IgG or the muscarinic agonist muscarine both induced changes in the expression of keratins 5 and 10, consistent with the inhibition of proliferation and upregulated differentiation and in keeping with the biological function of M3AR. In contrast, long-term incubations induced a keratin expression pattern consistent with upregulated proliferation and decreased differentiation, in keeping with the hyperproliferative state of KCs in PV. This change could result from desensitization of the M3AR, representing the net antagonist-like effect of the AuAb. Therefore, chronic exposure of KCs to the anti-M3AR AuAb interrupts the physiological regulation of KCs by endogenous ACh, contributing to the onset of acantholysis. Since cholinergic agents have already demonstrated antiacantholytic activity in a mouse model of PV and in PV patients, our results have translational significance and can guide future development of therapies for PV patients employing cholinergic drugs.
Assuntos
Autoanticorpos , Imunoglobulina G , Pênfigo , Receptores Muscarínicos , Acantólise/imunologia , Acantólise/metabolismo , Acantólise/patologia , Animais , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Pênfigo/imunologia , Pênfigo/metabolismo , Pênfigo/patologia , Pênfigo/terapia , Receptores Muscarínicos/imunologia , Receptores Muscarínicos/metabolismoRESUMO
Pemphigus vulgaris (PV) is a potentially lethal mucocutaneous blistering disease characterized by IgG autoantibodies (AuAbs) binding to epidermal keratinocytes and inducing this devastating disease. Here, we observed that non-desmoglein (Dsg) AuAbs in the sera of patients with Dsg1/3 AuAb-negative acute PV are pathogenic, because IgGs from these individuals induced skin blistering in neonatal mice caused by suprabasal acantholysis. Serum levels of AuAbs to desmocollin 3 (Dsc3), M3 muscarinic acetylcholine receptor (M3AR), and secretory pathway Ca2+/Mn2+-ATPase isoform 1 (SPCA1) correlated with the disease stage of PV. Moreover, AuAb absorption on recombinant Dsc3, M3AR, or SPCA1 both prevented skin blistering in the passive transfer of AuAbs model of PV in BALB/c mice and significantly decreased the extent of acantholysis in a neonatal mouse skin explant model. Although acantholytic activities of each of these immunoaffinity-purified AuAbs could not induce a PV-like phenotype, their mixture produced a synergistic effect manifested by a positive Nikolskiy sign in the skin of neonatal mice. The downstream signaling of all pathogenic non-Dsg AuAbs involved p38 mitogen-activated protein kinase (MAPK)-mediated phosphorylation and elevation of cytochrome c release and caspase 9 activity. Anti-Dsc3 and anti-SPCA1 AuAbs also activated SRC proto-oncogene, nonreceptor tyrosine kinase (SRC). Of note, although a constellation of non-Dsg AuAbs apparently disrupted epidermal integrity, elimination of a single pathogenic AuAb could prevent keratinocyte detachment and blistering. Therefore, anti-Dsg1/3 AuAb-free PV can be a model for elucidating the roles of non-Dsg antigen-specific AuAbs in the physiological regulation of keratinocyte cell-cell adhesion and blister development.
Assuntos
Desmogleína 1/imunologia , Desmogleína 3/imunologia , Pênfigo/imunologia , Animais , Animais Recém-Nascidos , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoanticorpos/isolamento & purificação , ATPases Transportadoras de Cálcio/imunologia , Cromatografia de Afinidade/métodos , Humanos , Queratinócitos/enzimologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pênfigo/patologia , Proto-Oncogene MasRESUMO
BACKGROUND: Several European countries recently developed international diagnostic and management guidelines for pemphigus, which have been instrumental in the standardization of pemphigus management. OBJECTIVE: We now present results from a subsequent Delphi consensus to broaden the generalizability of the recommendations. METHODS: A preliminary survey, based on the European Dermatology Forum and the European Academy of Dermatology and Venereology guidelines, was sent to a panel of international experts to determine the level of consensus. The results were discussed at the International Bullous Diseases Consensus Group in March 2016 during the annual American Academy of Dermatology conference. Following the meeting, a second survey was sent to more experts to achieve greater international consensus. RESULTS: The 39 experts participated in the first round of the Delphi survey, and 54 experts from 21 countries completed the second round. The number of statements in the survey was reduced from 175 topics in Delphi I to 24 topics in Delphi II on the basis of Delphi results and meeting discussion. LIMITATIONS: Each recommendation represents the majority opinion and therefore may not reflect all possible treatment options available. CONCLUSIONS: We present here the recommendations resulting from this Delphi process. This international consensus includes intravenous CD20 inhibitors as a first-line therapy option for moderate-to-severe pemphigus.
Assuntos
Fatores Imunológicos/administração & dosagem , Pênfigo/diagnóstico , Pênfigo/terapia , Plasmaferese , Guias de Prática Clínica como Assunto , Academias e Institutos/normas , Administração Intravenosa , Antígenos CD20/imunologia , Terapia Combinada/métodos , Terapia Combinada/normas , Consenso , Técnica Delphi , Dermatologia/métodos , Dermatologia/normas , Quimioterapia Combinada/métodos , Quimioterapia Combinada/normas , Europa (Continente) , Glucocorticoides/administração & dosagem , Humanos , Pênfigo/imunologia , Rituximab/administração & dosagem , Índice de Gravidade de DoençaRESUMO
Cutaneous deposition of eosinophil degranulation proteins is a major feature of eosinophil-rich cutaneous diseases including bullous pemphigoid (BP). We sought to better understand the effect of two of these proteins - eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), on human keratinocytes using the Het-1A cell line. To evaluate expression of key cytokines and chemokines observed in BP as well as metal metalloprotease 9 (MMP9), we performed qPCR and in-cell Western assays on cells treated with either ECP or EDN. We further evaluated the effect of ECP and EDN on keratinocyte survival, generation of reactive oxygen species (ROS) and apoptosis. Lastly, we assessed ECP and EDN's ability to induce keratinocyte detachment from provisional matrix. Treatment of keratinocytes with ECP and EDN resulted in significant increases in IL-5, eotaxin-1 and CCL5 (RANTES) expression at both mRNA and protein levels, but not IL-17 or IL-31. ECP and EDN also upregulate MMP9 production. Inhibiting MMP9, we confirmed that keratinocyte expression of IL-5, eotaxin-1 and RANTES was independent from MMP9. Both ECP and EDN were cytotoxic to keratinocytes, inducing ROS formation and apoptosis through a mitochondrion-dependent pathway as evidenced by results of terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) and cytochrome c release assays, respectively. ECP but not EDN led to significant keratinocyte detachment from provisional matrix. These findings demonstrate that the pathogenic effects of ECP and EDN in BP may result from their direct action on keratinocytes, and as such may became a target for future therapies in eosinophil-rich cutaneous diseases.
Assuntos
Proteína Catiônica de Eosinófilo/metabolismo , Neurotoxina Derivada de Eosinófilo/metabolismo , Eosinófilos/metabolismo , Queratinócitos/metabolismo , Apoptose , Linhagem Celular , Sobrevivência Celular , Quimiocina CCL11/metabolismo , Quimiocina CCL5/metabolismo , Proteína Catiônica de Eosinófilo/farmacologia , Neurotoxina Derivada de Eosinófilo/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-17/metabolismo , Interleucina-5/metabolismo , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Pemphigus vulgaris (PV) is a life-long, potentially fatal IgG autoantibody-mediated blistering disease targeting mucocutaneous keratinocytes (KCs). PV patients develop pathogenic anti-desmoglein (Dsg) 3 ± 1 and antimitochondrial antibodies (AMA), but it remained unknown whether and how AMA enter KCs and why other cell types are not affected in PV. Therefore, we sought to elucidate mechanisms of cell entry, trafficking, and pathogenic action of AMA in PV. We found that PVIgGs associated with neonatal Fc receptor (FcRn) on the cell membrane, and the PVIgG-FcRn complexes entered KCs and reached mitochondria where they dissociated. The liberated AMA altered mitochondrial membrane potential, respiration, and ATP production and induced cytochrome c release, although the lack or inactivation of FcRn abolished the ability of PVIgG to reach and damage mitochondria and to cause detachment of KCs. The assays of mitochondrial functions and keratinocyte adhesion demonstrated that although the pathobiological effects of AMA on KCs are reversible, they become irreversible, leading to epidermal blistering (acantholysis), when AMA synergize with anti-Dsg antibodies. Thus, it appears that AMA enter a keratinocyte in a complex with FcRn, become liberated from the endosome in the cytosol, and are trafficked to the mitochondria, wherein they trigger pro-apoptotic events leading to shrinkage of basal KCs uniquely expressing FcRn in epidermis. During recovery, KCs extend their cytoplasmic aprons toward neighboring cells, but anti-Dsg antibodies prevent assembly of nascent desmosomes due to steric hindrance, thus rendering acantholysis irreversible. In conclusion, FcRn is a common acceptor protein for internalization of AMA and, perhaps, for PV autoantibodies to other intracellular antigens, and PV is a novel disease paradigm for investigating and elucidating the role of FcRn in this autoimmune disease and possibly other autoimmune diseases.
Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Autoanticorpos/imunologia , Desmogleínas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Queratinócitos/imunologia , Pênfigo/imunologia , Receptores Fc/imunologia , Peptídeos Catiônicos Antimicrobianos/genética , Autoanticorpos/genética , Adesão Celular/genética , Adesão Celular/imunologia , Linhagem Celular , Membrana Celular/genética , Membrana Celular/imunologia , Membrana Celular/patologia , Desmogleínas/genética , Endossomos/genética , Endossomos/imunologia , Endossomos/patologia , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Queratinócitos/patologia , Masculino , Pênfigo/genética , Pênfigo/patologia , Transporte Proteico/genética , Transporte Proteico/imunologia , Receptores Fc/genéticaRESUMO
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Assuntos
Pênfigo/etiologia , Animais , Desmogleínas/imunologia , HumanosRESUMO
BACKGROUND: One of the major controversies of contemporary medicine is created by an increased consumption of nicotine and growing evidence of its connection to cancer, which urges elucidation of the molecular mechanisms of oncogenic effects of inhaled nicotine. Current research indicates that nicotinergic regulation of cell survival and death is more complex than originally thought, because it involves signals emanating from both cell membrane (cm)- and mitochondrial (mt)-nicotinic acetylcholine receptors (nAChRs). In this study, we elaborated on the novel concept linking cm-nAChRs to growth promotion of lung cancer cells through cooperation with the growth factor signaling, and mt-nAChRs - to inhibition of intrinsic apoptosis through prevention of opening of mitochondrial permeability transition pore (mPTP). METHODS: Experiments were performed with normal human lobar bronchial epithelial cells, the lung squamous cell carcinoma line SW900, and intact and NNK-transformed immortalized human bronchial cell line BEP2D. RESULTS: We demonstrated that the growth-promoting effect of nicotine mediated by activation of α7 cm-nAChR synergizes mainly with that of epidermal growth factor (EGF), α3 - vascular endothelial growth factor (VEGF), α4 - insulin-like growth factor I (IGF-I) and VEGF, whereas α9 with EGF, IGF-I and VEGF. We also established the ligand-binding abilities of mt-nAChRs and demonstrated that quantity of the mt-nAChRs coupled to inhibition of mPTP opening increases upon malignant transformation. CONCLUSIONS: These results indicated that the biological sum of simultaneous activation of cm- and mt-nAChRs produces a combination of growth-promoting and anti-apoptotic signals that implement the tumor-promoting action of nicotine on lung cells. Therefore, nAChRs may be a promising molecular target to arrest lung cancer progression and re-open mitochondrial apoptotic pathways.
Assuntos
Membrana Celular/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Nicotina/metabolismo , Receptores Nicotínicos/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/efeitos dos fármacos , Nicotina/toxicidadeRESUMO
Mucous membrane pemphigoid encompasses a group of autoimmune bullous diseases with a similar phenotype characterized by subepithelial blisters, erosions, and scarring of mucous membranes, skin, or both. Although knowledge about autoimmune bullous disease is increasing, there is often a lack of clear definitions of disease, outcome measures, and therapeutic end points. With clearer definitions and outcome measures, it is possible to directly compare the results and data from various studies using meta-analyses. This consensus statement provides accurate and reproducible definitions for disease extent, activity, outcome measures, end points, and therapeutic response for mucous membrane pemphigoid and proposes a disease extent score, the Mucous Membrane Pemphigoid Disease Area Index.
Assuntos
Penfigoide Mucomembranoso Benigno/diagnóstico , Penfigoide Mucomembranoso Benigno/terapia , Humanos , Guias de Prática Clínica como Assunto , Registros , Resultado do TratamentoRESUMO
The development of nonhormonal treatment of pemphigus vulgaris (PV) has been hampered by a lack of clear understanding of the mechanisms leading to keratinocyte (KC) detachment and death in pemphigus. In this study, we sought to identify changes in the vital mitochondrial functions in KCs treated with the sera from PV patients and healthy donors. PV sera significantly increased proton leakage from KCs, suggesting that PV IgGs increase production of reactive oxygen species. Indeed, measurement of intracellular reactive oxygen species production showed a drastic increase of cell staining in response to treatment by PV sera, which was confirmed by FACS analysis. Exposure of KCs to PV sera also caused dramatic changes in the mitochondrial membrane potential detected with the JC-1 dye. These changes can trigger the mitochondria-mediated intrinsic apoptosis. Although sera from different PV patients elicited unique patterns of mitochondrial damage, the mitochondria-protecting drugs nicotinamide (also called niacinamide), minocycline, and cyclosporine A exhibited a uniform protective effect. Their therapeutic activity was validated in the passive transfer model of PV in neonatal BALB/c mice. The highest efficacy of mitochondrial protection of the combination of these drugs found in mitochondrial assay was consistent with the ability of the same drug combination to abolish acantholysis in mouse skin. These findings provide a theoretical background for clinical reports of the efficacy of mitochondria-protecting drugs in PV patients. Pharmacological protection of mitochondria and/or compensation of an altered mitochondrial function may therefore become a novel approach to development of personalized nonhormonal therapies of patients with this potentially lethal autoimmune blistering disease.
Assuntos
Autoanticorpos/metabolismo , Imunoglobulina G/metabolismo , Queratinócitos/metabolismo , Mitocôndrias/metabolismo , Pênfigo/metabolismo , Animais , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , Linhagem Celular Transformada , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Queratinócitos/imunologia , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Minociclina/farmacologia , Mitocôndrias/imunologia , Mitocôndrias/patologia , Niacinamida/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/imunologia , Pênfigo/imunologia , Pênfigo/patologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Complexo Vitamínico B/farmacologiaRESUMO
OBJECTIVE: There is increasing evidence that serotonin (5-hydroxytryptamine [5-HT]) and distinct 5-HT receptors are involved in the pathogenesis of systemic sclerosis. The aim of this study was to test the hypothesis that tropisetron, a routinely used antiemetic agent previously characterized as a 5-HT(3/4) receptor-modulating agent, can directly affect collagen synthesis in vitro and attenuate experimentally induced fibrosis in vivo. METHODS: Functional in vitro studies were performed using human dermal fibroblasts (HDFs). Signal transduction studies included immunofluorescence analysis, Western immunoblotting, promoter reporter assays, cAMP/Ca(2+) measurements, and use of pharmacologic activators and inhibitors. Gene silencing was performed using small interfering RNA. Putative receptors of tropisetron were detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. The murine model of bleomycin-induced scleroderma was used to assess the antifibrogenic and antifibrotic effects of tropisetron in vivo. Collagen expression in vitro, ex vivo, and in situ was determined by real-time RT-PCR analysis, Western immunoblotting, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunohistochemical analysis. RESULTS: Tropisetron suppressed collagen synthesis induced by transforming growth factor ß1 (TGFß1). This effect was independent of 5-HT(3/4) receptor but was mediated via α7 nicotinic acetylcholine receptor (α7nAChR). Suppression of TGFß1-induced collagen synthesis occurred via an unknown molecular mechanism not involving modulation of the Smad, cAMP, Akt, c-Jun, or MAPK pathway. In vivo, tropisetron not only prevented skin fibrosis but also reduced the collagen content in established dermal fibrosis induced by bleomycin. CONCLUSION: Tropisetron directly reduces collagen synthesis in HDFs via an α7nAChR-dependent mechanism. The antifibrogenic and antifibrotic effects of this agent observed in a mouse model of bleomycin- induced scleroderma indicate the future potential of tropisetron in the treatment of fibrotic diseases such as scleroderma.
Assuntos
Colágeno/biossíntese , Indóis/farmacologia , Receptores Nicotínicos/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Células 3T3 , Adulto , Idoso , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Derme/efeitos dos fármacos , Derme/metabolismo , Derme/patologia , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Humanos , Camundongos , Pessoa de Meia-Idade , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Antagonistas da Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Tropizetrona , Receptor Nicotínico de Acetilcolina alfa7Assuntos
Dermatologistas , Necessidades e Demandas de Serviços de Saúde , Avaliação das Necessidades , Pacientes , Penfigoide Bolhoso/terapia , Pesquisadores , Adulto , Idoso , Idoso de 80 Anos ou mais , Atitude do Pessoal de Saúde , Dermatologistas/psicologia , Feminino , Pesquisas sobre Atenção à Saúde , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Pacientes/psicologia , Penfigoide Bolhoso/diagnóstico , Penfigoide Bolhoso/psicologia , Pesquisadores/psicologia , Participação dos InteressadosRESUMO
Grover's disease (GD) is a transient or persistent, monomorphous, papulovesicular, asymptomatic or pruritic eruption classified as non-familial acantholytic disorder. Contribution of autoimmune mechanisms to GD pathogenesis remains controversial. The purpose of this study was to investigate antibody-mediated autoimmunity in 11 patients with GD, 4 of which were positive for IgA and/or IgG antikeratinocyte antibodies by indirect immunofluorescence. We used the most sensitive proteomic technique for an unbiased analysis of IgA- and IgG-autoantibody reactivities. Multiplex analysis of autoantibody responses revealed autoreactivity of all 11 GD patients with cellular proteins involved in the signal transduction events regulating cell development, activation, growth, death, adhesion and motility. Semiquantitative fluorescence analysis of cultured keratinocytes pretreated with sera from each patient demonstrated decreased intensity of staining for desmoglein 1 and/or 3 and PCNA, whereas 4 of 10 GD sera induced BAD expression, indicating that binding of autoantibodies to keratinocytes alters expression/function of their adhesion molecules and activates apoptosis. We also tested the ability of GD sera to induce visible alterations of keratinocyte shape and motility in vitro but found no specific changes. Thus, our results demonstrated that humoral autoimmunity in GD can be mediated by both IgA and IgG autoantibodies. At this point, however, it is impossible to conclude whether these autoantibodies cause or are caused by the disease. Antidesmoglein antibodies may be triggered by exposure to immune system of sequestered antigens due to disintegration of desmosomes during primary acantholysis. Clarifying aetiology of GD will help improve treatment, which currently is symptomatic and of marginal effectiveness.
Assuntos
Acantólise/imunologia , Doenças Autoimunes/imunologia , Ictiose/imunologia , Dermatopatias/imunologia , Acantólise/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Apoptose , Autoanticorpos/sangue , Autoimunidade/imunologia , Moléculas de Adesão Celular/imunologia , Desmossomos/metabolismo , Humanos , Ictiose/diagnóstico , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Queratinócitos/citologia , Queratinócitos/imunologia , Pessoa de Meia-IdadeRESUMO
Ulcerative colitis (UC) and Crohn's disease (CD) are two forms of chronic inflammatory bowel disease. CD4 T cells play a central role in the pathogenesis of both diseases. Smoking affects both UC and CD but with opposite effects, ameliorating UC and worsening CD. We hypothesized that the severity of gut inflammation could be modulated through T cell nicotinic acetylcholine receptors (nAChRs) and that the exact clinical outcome would depend on the repertoire of nAChRs on CD4 T cells mediating each form of colitis. We measured clinical and immunologic outcomes of treating BALB/c mice with oxazolone- and trinitrobenzene sulfonic acid (TNBS)-induced colitides by nicotine. Nicotine attenuated oxazolone colitis, which was associated with an increased percentage of colonic regulatory T cells and a reduction of Th17 cells. TCR stimulation of naive CD4(+)CD62L(+) T cells in the presence of nicotine upregulated expression of Foxp3. In marked contrast, nicotine worsened TNBS colitis, and this was associated with increased Th17 cells among colonic CD4 T cells. Nicotine upregulated IL-10 and inhibited IL-17 production, which could be abolished by exogenous IL-12 that also abolished the nicotine-dependent upregulation of regulatory T cells. The dichotomous action of nicotine resulted from the up- and downregulation of anti-inflammatory α7 nAChR on colonic CD4 T cells induced by cytokines characteristic of the inflammatory milieu in oxazolone (IL-4) and TNBS (IL-12) colitis, respectively. These findings help explain the dichotomous effect of smoking in patients with UC and CD, and they underscore the potential for nicotinergic drugs in regulating colonic inflammation.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/imunologia , Citocinas/imunologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/biossíntese , Animais , Linfócitos T CD4-Positivos/imunologia , Separação Celular , Colite/metabolismo , Colite/patologia , Citocinas/biossíntese , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Receptores Nicotínicos/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Receptor Nicotínico de Acetilcolina alfa7RESUMO
The importance of acetylcholine (ACh) in keratinocyte adhesion and acantholysis has been investigated over the last three decades, particularly in the pathophysiology of autoimmune blistering dermatoses. Pemphigus vulgaris (PV) is an autoimmune blistering skin disease where autoantibody-mediated suprabasilar intraepidermal splitting causes flaccid blisters and non-healing erosions of the oral mucosa and sometimes also of the skin. Historically, acantholysis in PV was thought to be driven by anti-desmoglein (Dsg) antibodies. Herein, we describe the role of autoantibodies against keratinocyte muscarinic and nicotinic acetylcholine receptors, as well as the annexin-like molecule pemphaxin that also binds ACh, in the immunopathogenesis of PV. The identification of targets in this disease is important, as they may lead to novel diagnostic and therapeutic options in the future for this potentially deadly disease.
RESUMO
It is well established that auto/paracrine acetylcholine (ACh) is essential for wound epithelialization, and that the mechanisms include regulation of keratinocyte motility and adhesion via nicotinic ACh receptors (nAChRs). Keratinocyte nAChRs can be also activated by non-canonical ligands, such as secreted mammalian Ly-6/urokinase-type plasminogen activator receptor-related protein (SLURP)-1 and -2. In this study, we determined effects of recombinant (r)SLURP-1 and-2 on migration of human epidermal and oral keratinocytes under agarose and epithelialization of cutaneous and oral mucosal excisional wounds in mice, and also identified nAChRs mediating SLURP signals. Both in vitro and in vivo, rSLURP-1 decreased and SLURP-2 increased epithelialization rate. The mixture of both peptides accelerated epithelialization even further, indicating that their simultaneous signaling renders an additive physiologic response. The specificity of rSLURP actions was illustrated by similar effects on cutaneous and oral wounds, which feature distinct responses to injury, and also by abrogation of rSLURP effects with neutralizing antibodies. rSLURP-1 acted predominantly via the α7 nAChR-coupled up-regulation of the sedentary integrins α2 and α3 , whereas SLURP-2--through α3, and α9 nAChRs up-regulating migratory integrins α5 and αV . The biologic effects of rSLURPs required the presence of endogenous ACh, indicating that auto/paracrine SLURPs provide for a fine tuning of the physiologic regulation of crawling locomotion via the keratinocyte ACh axis. Since nAChRs have been shown to regulate SLURP production, cholinergic regulation of keratinocyte migration appears to be mediated by a reciprocally arranged network. The cholinergic peptides, therefore, may become prototype drugs for the treatment of wounds that fail to heal.
Assuntos
Acetilcolina/metabolismo , Antígenos Ly/metabolismo , Queratinócitos/metabolismo , Mucosa Bucal/metabolismo , Receptores Nicotínicos/metabolismo , Pele/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Cicatrização , Animais , Anticorpos Neutralizantes/metabolismo , Antígenos Ly/efeitos dos fármacos , Imuno-Histoquímica , Queratinócitos/efeitos dos fármacos , Camundongos , Receptores Nicotínicos/efeitos dos fármacos , Pele/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/efeitos dos fármacosRESUMO
Our scientific knowledge of bullous pemphigoid (BP) has dramatically progressed in recent years. However, despite the availability of various therapeutic options for the treatment of inflammatory diseases, only a few multicenter controlled trials have helped to define effective therapies in BP. A major obstacle in sharing multicenter-based evidences for therapeutic efforts is the lack of generally accepted definitions for the clinical evaluation of patients with BP. Common terms and end points of BP are needed so that experts in the field can accurately measure and assess disease extent, activity, severity, and therapeutic response, and thus facilitate and advance clinical trials. These recommendations from the International Pemphigoid Committee represent 2 years of collaborative efforts to attain mutually acceptable common definitions for BP and proposes a disease extent score, the BP Disease Area Index. These items should assist in the development of consistent reporting of outcomes in future BP reports and studies.
Assuntos
Dermatologia/normas , Avaliação de Resultados em Cuidados de Saúde , Penfigoide Bolhoso/diagnóstico , Índice de Gravidade de Doença , Consenso , HumanosRESUMO
The stratified epithelium enveloping the skin and lining the surfaces of oral and vaginal mucosa is comprised by keratinocytes that synthesize, secrete, degrade, and respond to acetylcholine via muscarinic and nicotinic receptors. The two pathways may compete or synergize with one another, so that net biologic effect represents the biologic sum of the effects of distinct acetylcholine receptors expressed by a keratinocyte at a particular stage of its development. Keratinocytes express a unique combination of muscarinic receptor subtypes at each stage of their development. Experimental results indicate that muscarinic receptors expressed in human keratinocytes regulate their viability, proliferation, migration, adhesion, and terminal differentiation, hair follicle cycling, and secretion of humectants, cytokines, and growth factors. Learning the muscarinic pharmacology of keratinocyte development and functions has salient clinical implications for patients with nonhealing wounds, mucocutaneous cancers, and various autoimmune and inflammatory diseases. Successful therapy of pemphigus lesions with topical pilocarpine and disappearance of psoriatic lesions due to systemic atropine therapy illustrate that such therapeutic approach is feasible.
Assuntos
Queratinócitos/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Receptores Muscarínicos/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Receptores Muscarínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismoRESUMO
Pemphigus vulgaris (PV) is an IgG autoantibody-mediated, potentially fatal mucocutaneous disease manifested by progressive non-healing erosions and blisters. Beyond acting to inhibit adhesion molecules, PVIgGs elicit a unique process of programmed cell death and detachment of epidermal keratinocytes termed apoptolysis. Mitochondrial damage by antimitochondrial antibodies (AMA) has proven to be a critical link in this process. AMA act synergistically with other autoantibodies in the pathogenesis of PV. Importantly, absorption of AMA inhibits the ability of PVIgGs to induce blisters. Pharmacologic agents that protect mitochondrial function offer a new targeted approach to treating this severe immunoblistering disease.
RESUMO
The M3 muscarinic acetylcholine receptor is predominantly expressed in the basal epidermal layer where it mediates the effects of the autocrine/paracrine cytotransmitter acetylcholine. Patients with the autoimmune blistering disease pemphigus develop autoantibodies to M3 muscarinic acetylcholine receptor and show alterations in keratinocyte adhesion, proliferation, and differentiation, suggesting that M3 muscarinic acetylcholine receptor controls these cellular functions. Chmr3-/- mice display altered epidermal morphology resembling that seen in patients with pemphigus vulgaris. In this study, we characterized the cellular and molecular mechanisms through which M3 muscarinic acetylcholine receptor controls epidermal structure and function. We used single-cell RNA sequencing to evaluate keratinocyte heterogeneity and identify differentially expressed genes in specific subpopulations of epidermal cells in Chmr3-/- neonatal mice. We found that Chmr3-/- mice feature abnormal epidermal morphology characterized by accumulation of nucleated basal cells, shrinkage of basal keratinocytes, and enlargement of intercellular spaces. These morphologic changes were associated with upregulation of cell proliferation genes and downregulation of genes contributing to epidermal differentiation, extracellular matrix formation, intercellular adhesion, and cell arrangement. These findings provide, to our knowledge, previously unreported insights into how acetylcholine controls epidermal differentiation and lay a groundwork for future translational studies evaluating the therapeutic potential of cholinergic drugs in dermatology.