Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 37(3): 1247-1254, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33417463

RESUMO

Here, we propose a novel method for the synthesis of extremely uniform, diversely doped silicon nanotube heterostructures. The method, comprising a simple two-step synthesis, exploits the use of a Ge nanowire sacrificial core upon which a multidoping axial pattern can be easily obtained, that is enclosed in an intrinsic Si shell. The Ge-Si core-shell structure is then heated to 750 °C, allowing the migration of dopant elements from the Ge core directly into the Si shell. Removal of the Ge core, via either wet or dry etch, does not impair the crystallinity of the Si shell nor its electrical characteristics, allowing for the formation of a multidoped axially patterned, conformal, and uniform Si nanotube. The precise dopant patterning allows for the extension of Si nanotube applications, which were unattainable because of the inability to precisely control the parameters and uniformity of the nanotubes while doping the structure simultaneously.

2.
Anal Chem ; 91(22): 14375-14382, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31621301

RESUMO

The development of a rapid, sensitive, and selective real-time detection method for explosives traces may have an enormous impact on civilian national security, military applications, and environmental monitoring. However, real-time sensing of explosives still possesses a huge analytical hurdle, rendering explosives detection an issue of burning immediacy and an enormous current challenge in terms of research and development. Even though several explosives detection methods have been established, these approaches are typically time-consuming, need relatively large equipment, demand sample preparation, require a skilled operator, and lack the capability to do high-throughput real-time detection, thus strongly constraining their mass deployment. Here, we demonstrate the use of amino-modified carbon microfiber (µCF) working electrodes for ultrasensitive, selective, and multiplex detection of nitro-based explosives. Furthermore, our sensing method works at high sampling rates by a single electrode in a single detection cycle. We hereby present the first demonstration of porous µCF electrodes used for the simultaneous collection/preconcentration of explosive molecular species through direct air sampling, followed by the electrochemical detection of the surface adsorbed electroactive species. Our chemically modified µCF electrodes allow straightforward vapor-phase detection and discrimination of multiple nitro-based explosives directly from collected air samples. Hence, our sensing approach has been shown highly effective in the ultratrace detection of nitro-based explosives, under real-world conditions.

3.
Nano Lett ; 18(1): 70-80, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29198117

RESUMO

The highly controlled formation of "radial" silicon/NiSi  core-shell nanowire heterostructures has been demonstrated for the first time. Here, we investigated the "radial" diffusion of nickel atoms into crystalline nanoscale silicon pillar 11 cores, followed by nickel silicide phase formation and the creation of a well-defined shell structure. The described approach is based on a two-step thermal process, which involves metal diffusion at low temperatures in the range of 200-400 °C, followed by a thermal curing step at a higher temperature of 400 °C. In-depth crystallographic analysis was performed by nanosectioning the resulting silicide-shelled silicon nanopillar heterostructures, giving us the ability to study in detail the newly formed silicide shells. Remarkably, it was observed that the resulting silicide shell thickness has a self-limiting behavior, and can be tightly controlled by the modulation of the initial diffusion-step temperature. In addition, electrical measurements of the core-shell structures revealed that the resulting shells can serve as an embedded conductive layer in future optoelectronic applications. This research provides a broad insight into the Ni silicide "radial" diffusion process at the nanoscale regime, and offers a simple approach to form thickness-controlled metal silicide shells in the range of 5-100 nm around semiconductor nanowire core structures, regardless the diameter of the nanowire cores. These high quality Si/NiSi core-shell nanowire structures will be applied in the near future as building blocks for the creation of utrathin highly conductive optically transparent top electrodes, over vertical nanopillars-based solar cell devices, which may subsequently lead to significant performance improvements of these devices in terms of charge collection and reduced recombination.

4.
Nano Lett ; 18(1): 190-201, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29202247

RESUMO

Silicon-based photodetectors cannot distinguish between different wavelengths. Therefore, these detectors relay on color-specific filters to achieve color separation. Color filters add complexity to color sensitive device fabrication, and hinder miniaturization of such devices. Here, we report an ultrasmall (as small as ∼20 nm by 300 nm), red-green-blue-violet (RGBV) filter-free spectrally gated field effect transistor (SGFET) detectors. These photodetectors are based on organic-silicon nanowire hybrid FET devices, capable of detecting specific visible wavelength spectrum with full width at half-maxima (fwhm) under 100 nm. Each SGFET is controlled by a distinctive RGBV spectral range, according to its specific organic fluorophore functionalization. The spectral-specific RGBV detection is accomplished via covalent attachment of different fluorophores. The fluorophore molecules inject electrons into the nanowire structure as a result of light absorption at the appropriate RGBV spectral range. These photoinduced electrons modify the occupancies of the oxide's surface states, shifting the device threshold voltage, thus changing its conductivity, and functioning as a negative stress bias in a p-type SiNW FETs. A positive biasing can be achieved via UV light-induced ionization, which leads to detrapping and translocation of electrons at the oxide layer. Furthermore, a novel theoretical model on the mechanism of action of these devices was developed. Also, we show that suspended SGFETs can function as nonvolatile memory elements, which unlike fast-relaxing on-surface SGFETs, can store discrete "on" (RGBV illumination) and "off" (UV illumination) states for several days at ambient conditions. We also demonstrate a unique single-nanowire multicolor photodetector, enabling in principle a broad spectral detection over a single silicon nanowire element. These highly compact, spectral-controlled nanodevices have the potential to serve in various future novel optoelectric applications.

5.
Chemistry ; 24(59): 15750-15755, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-29745993

RESUMO

Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.

6.
Nano Lett ; 16(11): 6960-6966, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27753499

RESUMO

Here, we demonstrate a novel method for the production of single-crystal Si nanowire arrays based on the top-down carving of Si-nanowall structures from a donor substrate, and their subsequent controlled and selective harvesting into a sacrificial solid material block. Nanosectioning of the nanostructures-embedding block by ultramicrotome leads to the formation of size, shape, and orientation-controlled high quality nanowire arrays. Additionally, we introduce a novel approach that enables transferring the nanowire arrays to any acceptor substrate, while preserving their orientation, and placing them on defined locations. Furthermore, crystallographic analysis and electrical measurements were performed, proving that the quality of the sectioned nanowires, which derive from their original crystalline donor substrate, are remarkably preserved.

7.
Nano Lett ; 11(4): 1727-32, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21438594

RESUMO

Fuel cells (FCs) are promising electrochemical devices that convert chemical energy of fuels directly into electrical energy. We present a new anode material based on nanotextured metal copper for fuel cell applications. We have demonstrated that low-cost copper catalyst anodes act as highly efficient and ultra-long-lasting materials for the direct electro-oxidation of ammonia-borane and additional amine derivatives. High power densities of ca. 1W·cm(-2) (ca. -1 V vs Ag/AgCl at 1 A) are readily achieved at room temperature. We fabricate fuel cell devices based on our nanotextured Cu anodes in combination with commercial air cathodes.


Assuntos
Cobre/química , Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletrodos , Nanoestruturas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Tamanho da Partícula
8.
Nat Commun ; 13(1): 6375, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289211

RESUMO

Since its onset in December 2019, severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, has caused over 6.5 million deaths worldwide as of October 2022. Attempts to curb viral transmission rely heavily on reliable testing to detect infections since a large number of transmissions are carried through asymptomatic individuals. Many available detection methods fall short in terms of reliability or point-of-care applicability. Here, we report an electrochemical approach targeting a viral proteolytic enzyme, 3CLpro, as a marker of active infection. We detect proteolytic activity directly from untreated saliva within one minute of sample incubation using a reduction-oxidation pH indicator. Importantly, clinical tests of saliva samples from 50 subjects show accurate detection of SARS-CoV-2, with high sensitivity and specificity, validated by PCR testing. These, coupled with our platform's ultrafast detection, simplicity, low cost and point-of-care compatibility, make it a promising method for the real-world SARS-CoV-2 mass-screening.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Saliva , Reprodutibilidade dos Testes , Eletrônica , Proteases Virais
9.
ACS Sens ; 6(3): 1187-1198, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33507747

RESUMO

Plants are the central source of food for humans around the world. Unfortunately, plants can be negatively affected by diverse kinds of diseases that are responsible for major economic losses worldwide. Thus, monitoring plant health and early detection of pathogens are essential to reduce disease spread and facilitate effective management practices. Various detection approaches are currently practiced. These methods mainly include visual inspection and laboratory tests. Nonetheless, these methods are labor-intensive, time-consuming, expensive, and inefficient in the early stages of infection. Thus, it is extremely important to detect diseases at the early stages of the epidemic. Here, we would like to present a fast, sensitive, and reliable electrochemical sensing platform for the detection of airborne soybean rust spores. The suspected airborne soybean rust spores are first collected and trapped inside a carbon 3D electrode matrix by high-capacity air-sampling means. Then, a specific biotinylated aptamer, suitable to target specific sites of soybean rust spores is applied. This aptamer agent binds to the surface of the collected spores on the electrode. Finally, spore-bound aptamer units are incubated with a streptavidin-alkaline phosphatase agent leading to the enzymatic formation of p-nitrophenol, which is characterized by its unique electrochemical properties. Our method allows for the rapid (ca. 2 min), selective, and sensitive collection and detection of soybean rust spores (down to the limit of 100-200 collected spores per cm2 of electrode area). This method could be further optimized for its sensitivity and applied to the future multiplex early detection of various airborne plant diseases.


Assuntos
Basidiomycota , Glycine max , Alérgenos , Humanos , Doenças das Plantas
10.
J Am Chem Soc ; 130(30): 9726-33, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18597454

RESUMO

Electrochemical sensors for the analysis of TNT with enhanced sensitivities are described. The enhanced sensitivities are achieved by tailoring pi-donor-acceptor interactions between TNT and pi-donor-modified electrodes or pi-donor-cross-linked Au nanoparticles linked to the electrode. In one configuration a p-aminothiophenolate monolayer-modified electrode leads to the analysis of TNT with a sensitivity corresponding to 17 ppb (74 nM). In the second configuration, the cross-linking of Au NPs by oligothioaniline bridges to the electrode yields a functionalized electrode that detects TNT with a sensitivity that corresponds to 460 ppt (2 nM). Most impressively, the imprinting of molecular TNT recognition sites into the pi-donor oligoaniline-cross-linked Au nanoparticles yields a functionalized electrode with a sensitivity that corresponds to 46 ppt (200 pM). The electrode reveals high selectivity, reusability, and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA