Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7266, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142619

RESUMO

Obesity and type 2 diabetes are two closely related diseases representing a serious threat worldwide. An increase in metabolic rate through enhancement of non-shivering thermogenesis in adipose tissue may represent a potential therapeutic strategy. Nevertheless, a better understanding of thermogenesis transcriptional regulation is needed to allow the development of new effective treatments. Here, we aimed to characterize the specific transcriptomic response of white and brown adipose tissues after thermogenic induction. Using cold exposure to induce thermogenesis in mice, we identified mRNAs and miRNAs that were differentially expressed in several adipose depots. In addition, integration of transcriptomic data in regulatory networks of miRNAs and transcription factors allowed the identification of key nodes likely controlling metabolism and immune response. Moreover, we identified the putative role of the transcription factor PU.1 in the regulation of PPARγ-mediated thermogenic response of subcutaneous white adipose tissue. Therefore, the present study provides new insights into the molecular mechanisms that regulate non-shivering thermogenesis.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Camundongos , Animais , Transcriptoma , Diabetes Mellitus Tipo 2/metabolismo , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Mol Ther Methods Clin Dev ; 25: 190-204, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35434177

RESUMO

Type 2 diabetes, insulin resistance, and obesity are strongly associated and are a major health problem worldwide. Obesity largely results from a sustained imbalance between energy intake and expenditure. Therapeutic approaches targeting metabolic rate may counteract body weight gain and insulin resistance. Bone morphogenic protein 7 (BMP7) has proven to enhance energy expenditure by inducing non-shivering thermogenesis in short-term studies in mice treated with the recombinant protein or adenoviral vectors encoding BMP7. To achieve long-term BMP7 effects, the use of adeno-associated viral (AAV) vectors would provide sustained production of the protein after a single administration. Here, we demonstrated that treatment of high-fat-diet-fed mice and ob/ob mice with liver-directed AAV-BMP7 vectors enabled a long-lasting increase in circulating levels of this factor. This rise in BMP7 concentration induced browning of white adipose tissue (WAT) and activation of brown adipose tissue, which enhanced energy expenditure, and reversed WAT hypertrophy, hepatic steatosis, and WAT and liver inflammation, ultimately resulting in normalization of body weight and insulin resistance. This study highlights the potential of AAV-BMP7-mediated gene therapy for the treatment of insulin resistance, type 2 diabetes, and obesity.

3.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29987000

RESUMO

Prevalence of type 2 diabetes (T2D) and obesity is increasing worldwide. Currently available therapies are not suited for all patients in the heterogeneous obese/T2D population, hence the need for novel treatments. Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic agent for T2D/obesity. Native FGF21 has, however, poor pharmacokinetic properties, making gene therapy an attractive strategy to achieve sustained circulating levels of this protein. Here, adeno-associated viral vectors (AAV) were used to genetically engineer liver, adipose tissue, or skeletal muscle to secrete FGF21. Treatment of animals under long-term high-fat diet feeding or of ob/ob mice resulted in marked reductions in body weight, adipose tissue hypertrophy and inflammation, hepatic steatosis, inflammation and fibrosis, and insulin resistance for > 1 year. This therapeutic effect was achieved in the absence of side effects despite continuously elevated serum FGF21. Furthermore, FGF21 overproduction in healthy animals fed a standard diet prevented the increase in weight and insulin resistance associated with aging. Our study underscores the potential of FGF21 gene therapy to treat obesity, insulin resistance, and T2D.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Fatores de Crescimento de Fibroblastos/genética , Terapia Genética , Resistência à Insulina , Obesidade/terapia , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica , Metabolismo Energético , Fígado Gorduroso/terapia , Fatores de Crescimento de Fibroblastos/metabolismo , Fibrose/terapia , Técnicas de Transferência de Genes , Hiperplasia/terapia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade/genética , Pancreatite/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA