Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(3): 100736, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342407

RESUMO

The oocyst is a sporogonic stage of Plasmodium development that takes place in the mosquito midgut in about 2 weeks. The cyst is protected by a capsule of unknown composition, and little is known about oocyst biology. We carried out a proteomic analysis of oocyst samples isolated at early, mid, and late time points of development. Four biological replicates for each time point were analyzed, and almost 600 oocyst-specific candidates were identified. The analysis revealed that, in young oocysts, there is a strong activity of protein and DNA synthesis, whereas in mature oocysts, proteins involved in oocyst and sporozoite development, gliding motility, and invasion are mostly abundant. Among the proteins identified at early stages, 17 candidates are specific to young oocysts. Thirty-four candidates are common to oocyst and the merosome stages (sporozoite proteins excluded), sharing common features as replication and egress. Western blot and immunofluorescence analyses of selected candidates confirm the expression profile obtained by proteomic analysis.


Assuntos
Anopheles , Plasmodium , Animais , Oocistos/metabolismo , Proteômica , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo
2.
Mol Cell Proteomics ; 19(12): 1986-1997, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883804

RESUMO

Plasmodium, the malaria parasite, undergoes a complex life cycle alternating between a vertebrate host and a mosquito vector of the genus Anopheles In red blood cells of the vertebrate host, Plasmodium multiplies asexually or differentiates into gamete precursors, the male and female gametocytes, responsible for parasite transmission. Sexual stage maturation occurs in the midgut of the mosquito vector, where male and female gametes egress from the host erythrocytes to fuse and form a zygote. Gamete egress entails the successive rupture of two membranes surrounding the parasite, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In this study, we used the rodent model parasite Plasmodium berghei to design a label-free quantitative proteomic approach aimed at identifying gender-related proteins differentially released/secreted by purified mature gametocytes when activated to form gametes. We compared the abundance of molecules secreted by wild type gametocytes of both genders with that of a transgenic line defective in male gamete maturation and egress. This enabled us to provide a comprehensive data set of egress-related molecules and their gender specificity. Using specific antibodies, we validated eleven candidate molecules, predicted as either gender-specific or common to both male and female gametocytes. All of them localize to punctuate, vesicle-like structures that relocate to cell periphery upon activation, but only three of them localize to the gametocyte-specific secretory vesicles named osmiophilic bodies. Our results confirm that the egress process involves a tightly coordinated secretory apparatus that includes different types of vesicles and may put the basis for functional studies aimed at designing novel transmission-blocking molecules.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Gametogênese , Células Germinativas/metabolismo , Masculino , Camundongos , Proteômica , Frações Subcelulares/metabolismo , Vesículas Transportadoras/metabolismo
3.
Cell Microbiol ; 21(7): e13028, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941868

RESUMO

The Plasmodium subtilisin-like serine protease SUB1 is expressed in hepatic and both asexual and sexual blood parasite stages. SUB1 is required for egress of invasive forms of the parasite from both erythrocytes and hepatocytes, but its subcellular localisation, function, and potential substrates in the sexual stages are unknown. Here, we have characterised the expression profile and subcellular localisation of SUB1 in Plasmodium berghei sexual stages. We show that the protease is selectively expressed in mature male gametocytes and localises to secretory organelles known to be involved in gamete egress, called male osmiophilic bodies. We have investigated PbSUB1 function in the sexual stages by generating P. berghei transgenic lines deficient in PbSUB1 expression or enzyme activity in gametocytes. Our results demonstrate that PbSUB1 plays a role in male gamete egress. We also show for the first time that the PbSUB1 substrate PbSERA3 is expressed in gametocytes and processed by PbSUB1 upon gametocyte activation. Taken together, our results strongly suggest that PbSUB1 is not only a promising drug target for asexual stages but could also be an attractive malaria transmission-blocking target.


Assuntos
Malária/genética , Plasmodium berghei/genética , Serina Endopeptidases/genética , Subtilisinas/genética , Animais , Eritrócitos/parasitologia , Células Germinativas/parasitologia , Hepatócitos/parasitologia , Malária/parasitologia , Masculino , Organelas/parasitologia , Plasmodium berghei/patogenicidade , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade
4.
Mol Cell Proteomics ; 16(10): 1801-1814, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798222

RESUMO

Membrane microdomains that include lipid rafts, are involved in key physiological and pathological processes and participate in the entry of endocellular pathogens. These assemblies, enriched in cholesterol and sphingolipids, form highly dynamic, liquid-ordered phases that can be separated from the bulk membranes thanks to their resistance to solubilization by nonionic detergents. To characterize complexity and dynamics of detergent-resistant membranes of sexual stages of the rodent malaria parasite Plasmodium berghei, here we propose an integrated study of raft components based on proteomics, lipid analysis and bioinformatics. This analysis revealed unexpected heterogeneity and unexplored pathways associated with these specialized assemblies. Protein-protein relationships and protein-lipid co-occurrence were described through multi-component networks. The proposed approach can be widely applied to virtually every cell type in different contexts and perturbations, under physiological and/or pathological conditions.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Malária/parasitologia , Microdomínios da Membrana/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Animais , Colesterol/química , Colesterol/metabolismo , Simulação por Computador , Detergentes/química , Modelos Animais de Doenças , Gametogênese/fisiologia , Humanos , Lipídeos/análise , Microdomínios da Membrana/química , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Esfingolipídeos/química , Esfingolipídeos/metabolismo
5.
Cell Microbiol ; 17(3): 355-68, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25262869

RESUMO

Gametogenesis is the earliest event after uptake of malaria parasites by the mosquito vector, with a decisive impact on colonization of the mosquito midgut. This process is triggered by a drop in temperature and contact with mosquito molecules. In a few minutes, male and female gametocytes escape from the host erythrocyte by rupturing the parasitophorous vacuole and the erythrocyte membranes. Electron-dense, oval-shaped organelles, the osmiophilic bodies (OB), have been implicated in the egress of female gametocytes. By comparative electron microscopy and electron tomography analyses combined with immunolocalization experiments, we here define the morphological features distinctive of male secretory organelles, hereafter named MOB (male osmiophilic bodies). These organelles appear as club-shaped, electron-dense vesicles, smaller than female OB. We found that a drop in temperature triggers MOB clustering, independently of exposure to other stimuli. MDV1/PEG3, a protein associated with OB in Plasmodium berghei females, localizes to both non-clustered and clustered MOB, suggesting that clustering precedes vesicle discharge. A P. berghei mutant lacking the OB-resident female-specific protein Pbg377 displays a dramatic reduction in size of the OB, accompanied by a delay in female gamete egress efficiency, while female gamete fertility is not affected. Immunolocalization experiments indicated that MDV1/PEG3 is still recruited to OB-remnant structures.


Assuntos
Organelas/ultraestrutura , Plasmodium berghei/ultraestrutura , Animais , Tomografia com Microscopia Eletrônica , Feminino , Camundongos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Organelas/química , Plasmodium berghei/química , Proteínas de Protozoários/análise
6.
Int J Cancer ; 132(2): 335-44, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22700466

RESUMO

Persistent infection with high risk genotypes of human papillomavirus (HPV) is the cause of cervical cancer, one of most common cancer among woman worldwide, and represents an important risk factor associated with other anogenital and oropharyngeal cancers in men and women. Here, we designed a therapeutic vaccine based on integrase defective lentiviral vector (IDLV) to deliver a mutated nononcogenic form of HPV16 E7 protein, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer, fused to calreticulin (CRT), a protein able to enhance major histocompatibility complex class I antigen presentation (IDLV-CRT/E7). Vaccination with IDLV-CRT/E7 induced a potent and persistent E7-specific T cell response up to 1 year after a single immunization. Importantly, a single immunization with IDLV-CRT/E7 was able to prevent growth of E7-expressing TC-1 tumor cells and to eradicate established tumors in mice. The strong therapeutic effect induced by the IDLV-based vaccine in this preclinical model suggests that this strategy may be further exploited as a safe and attractive anticancer immunotherapeutic vaccine in humans.


Assuntos
Vacinas Anticâncer/administração & dosagem , Integrases/genética , Lentivirus/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/prevenção & controle , Neoplasias do Colo do Útero/prevenção & controle , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Calreticulina/biossíntese , Calreticulina/genética , Calreticulina/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Vetores Genéticos , Humanos , Imunidade Celular , Imunidade Humoral , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Lentivirus/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/biossíntese , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Carga Tumoral , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Vacinação , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomedicines ; 11(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831149

RESUMO

The emergence of the new pathogen SARS-CoV-2 determined a rapid need for monoclonal antibodies (mAbs) to detect the virus in biological fluids as a rapid tool to identify infected individuals to be treated or quarantined. The majority of commercially available antigenic tests for SARS-CoV-2 rely on the detection of N antigen in biologic fluid using anti-N antibodies, and their capacity to specifically identify subjects infected by SARS-CoV-2 is questionable due to several structural analogies among the N proteins of different coronaviruses. In order to produce new specific antibodies, BALB/c mice were immunized three times at 20-day intervals with a recombinant spike (S) protein. The procedure used was highly efficient, and 40 different specific mAbs were isolated, purified and characterized, with 13 ultimately being selected for their specificity and lack of cross reactivity with other human coronaviruses. The specific epitopes recognized by the selected mAbs were identified through a peptide library and/or by recombinant fragments of the S protein. In particular, the selected mAbs recognized different linear epitopes along the S1, excluding the receptor binding domain, and along the S2 subunits of the S protein of SARS-CoV-2 and its major variants of concern. We identified combinations of anti-S mAbs suitable for use in ELISA or rapid diagnostic tests, with the highest sensitivity and specificity coming from proof-of-concept tests using recombinant antigens, SARS-CoV-2 or biological fluids from infected individuals, that represent important additional tools for the diagnosis of COVID-19.

8.
Sci Rep ; 12(1): 9592, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689013

RESUMO

Malaria long-term elimination depends on parasite transmission control. Plasmodium sexual stage maturation in the mosquito, including egress from the host erythrocyte, is one of the prime targets for transmission-blocking interventions. This work aims to identify candidate molecules potentially involved in gamete emergence from the host erythrocyte, as novel transmission blocking targets. We analyzed by quantitative mass spectrometry the proteins released/secreted by purified Plasmodium falciparum gametocytes upon induction of gametogenesis. The proteome obtained showed a good overlap (74%) with the one previously characterized in similar conditions from gametocytes of the rodent malaria parasite P. berghei. Four candidates were selected based on comparative analysis of their abundance values in released vs total gametocyte proteome. We also characterized the P. falciparum orthologue of the microgamete surface protein (MiGS), a marker of male gametocyte secretory vesicles in murine models of malaria. The findings of this study reveal that all the selected candidate proteins are expressed in both genders and localize to vesicle-like structures that respond to gametogenesis stimuli. This result, together with the fact that the selected proteins are released during gamete emergence in both Plasmodium species, makes them interesting candidates for future functional studies to investigate their potential role in the gametogenesis process.


Assuntos
Malária Falciparum , Malária , Animais , Feminino , Células Germinativas/metabolismo , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Camundongos , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
9.
NPJ Vaccines ; 7(1): 44, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449174

RESUMO

Integrase Defective Lentiviral Vectors (IDLVs) represent an attractive vaccine platform for delivering HIV-1 antigens, given their ability to induce specific and persistent immune responses in both mice and non-human primates (NHPs). Recent advances in HIV-1 immunogen design demonstrated that native-like HIV-1 Envelope (Env) trimers that mimic the structure of virion-associated Env induce neutralization breadth in rabbits and macaques. Here, we describe the development of an IDLV-based HIV-1 vaccine expressing either soluble ConSOSL.UFO.664 or membrane-tethered ConSOSL.UFO.750 native-like Env immunogens with enhanced bNAb epitopes exposure. We show that IDLV can be pseudotyped with properly folded membrane-tethered native-like UFO.750 trimers. After a single IDLV injection in BALB/c mice, IDLV-UFO.750 induced a faster humoral kinetic as well as higher levels of anti-Env IgG compared to IDLV-UFO.664. IDLV-UFO.750 vaccinated cynomolgus macaques developed unusually long-lasting anti-Env IgG antibodies, as underlined by their remarkable half-life both after priming and boost with IDLV. After boosting with recombinant ConM SOSIP.v7 protein, two animals developed neutralization activity against the autologous tier 1B ConS virus mediated by V1/V2 and V3 glycan sites responses. By combining the possibility to display stabilized trimeric Env on the vector particles with the ability to induce sustained humoral responses, IDLVs represent an appropriate strategy for delivering rationally designed antigens to progress towards an effective HIV-1 vaccine.

10.
Viruses ; 13(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672349

RESUMO

Integrase-defective lentiviral vectors (IDLVs) have been used as a safe and efficient delivery system in several immunization protocols in murine and non-human primate preclinical models as well as in recent clinical trials. In this work, we validated in preclinical murine models our vaccine platform based on IDLVs as delivery system for cancer immunotherapy. To evaluate the anti-tumor activity of our vaccine strategy we generated IDLV delivering ovalbumin (OVA) as a non-self-model antigen and TRP2 as a self-tumor associated antigen (TAA) of melanoma. Results demonstrated the ability of IDLVs to eradicate and/or controlling tumor growth after a single immunization in preventive and therapeutic approaches, using lymphoma and melanoma expressing OVA. Importantly, LV-TRP2 but not IDLV-TRP2 was able to break tolerance efficiently and prevent tumor growth of B16F10 melanoma cells. In order to improve the IDLV efficacy, the human homologue of murine TRP2 was used, showing the ability to break tolerance and control the tumor growth. These results validate the use of IDLV for cancer therapy.


Assuntos
Vacinas Anticâncer/administração & dosagem , Vetores Genéticos/genética , Imunoterapia , Integrases/metabolismo , Lentivirus/genética , Melanoma/imunologia , Melanoma/terapia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vetores Genéticos/metabolismo , Humanos , Integrases/genética , Oxirredutases Intramoleculares/administração & dosagem , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Lentivirus/enzimologia , Lentivirus/metabolismo , Masculino , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Vacinação
11.
Commun Biol ; 4(1): 1375, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880413

RESUMO

Cholesterol-rich microdomains are membrane compartments characterized by specific lipid and protein composition. These dynamic assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition of human erythrocyte membrane microdomains. Based on their floating properties, we also categorized the microdomain-associated proteins into clusters. Interestingly, erythrocyte microdomains include the vast majority of the proteins known to be involved in invasion by the malaria parasite Plasmodium falciparum. We show here that the Ecto-ADP-ribosyltransferase 4 (ART4) and Aquaporin 1 (AQP1), found within one specific cluster, containing the essential host determinant CD55, are recruited to the site of parasite entry and then internalized to the newly formed parasitophorous vacuole membrane. By generating null erythroid cell lines, we showed that one of these proteins, ART4, plays a role in P. falciparum invasion. We also found that genetic variants in both ART4 and AQP1 are associated with susceptibility to the disease in a malaria-endemic population.


Assuntos
Membrana Eritrocítica/química , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Malária/parasitologia , Microdomínios da Membrana/química , Membrana Eritrocítica/parasitologia , Eritrócitos/química , Humanos , Plasmodium falciparum/fisiologia
12.
Microbiologyopen ; 9(7): e1038, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352241

RESUMO

Male and female Plasmodium gametocytes ingested by the Anopheles mosquitoes during a blood meal egress from the red blood cells by rupturing the two surrounding membranes, the parasitophorous vacuole and the red blood cell membranes. Proteins of the so-called osmiophilic bodies, (OBs), secretory organelles resident in the cytoplasm, are important players in this process. Once gametes emerge, the female is ready to be fertilized while the male develops into motile flagellar gametes. Here, we describe the function(s) of PBANKA_1115200, which we named Gamete Egress Protein (GEP), a protein specific to malaria parasites. GEP is restricted to gametocytes, expressed in gametocytes of both genders and partly localizes to the OBs. A mutant lacking the protein shows aberrant rupture of the two surrounding membranes, while OBs discharge is delayed but not aborted. Moreover, we identified a second function of GEP during exflagellation since the axonemes of the male flagellar gametes were not motile. Genetic crossing experiments reveal that both genders are unable to establish infections in mosquitoes and thus the lack of GEP leads to a complete block in Plasmodium transmission from mice to mosquitoes. The combination of our results reveals essential and pleiotropic functions of GEP in Plasmodium gametogenesis.


Assuntos
Gametogênese/genética , Células Germinativas/crescimento & desenvolvimento , Malária/transmissão , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Técnicas de Inativação de Genes , Malária/parasitologia , Masculino , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo
13.
Sci Rep ; 9(1): 12360, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451707

RESUMO

The discovery that Volatile Organic Compounds (VOCs) can be biomarkers for several diseases has led to the conception of their possible application as diagnostic tools. In this study, we aimed at defining of diagnostic signatures for the presence of malaria transmissible stages in infected individuals. To do this, we compared VOCs released by asexual and sexual stage cultures of Plasmodium falciparum, the deadliest species of malaria, with those emitted by uninfected red blood cells (RBCs). VOC analysis was carried out with an innovative set-up, where each sample was simultaneously analysed by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) and an electronic nose. PTR-Tof-MS results show that sexual stages are characterized by a larger emission of hexanal, compared with uninfected or asexual stage-infected RBCs, which makes them clearly identifiable. PTR-Tof-MS analysis also detected differences in VOC composition between asexual stages and uninfected RBCs. These results have been substantially replicated by the electronic nose analysis and may open the possibility to develop sensitive and easy-to-use devices able to detect sexual parasite stages in infected individuals. This study also demonstrates that the combination of mass spectrometry with electronic noses is a useful tool to identify markers of diseases and to support the development of optimized sensors.


Assuntos
Nariz Eletrônico , Eritrócitos/parasitologia , Espectrometria de Massas , Plasmodium falciparum/fisiologia , Prótons , Compostos Orgânicos Voláteis/análise , Adulto , Humanos , Análise de Componente Principal , Processamento de Sinais Assistido por Computador
14.
Front Immunol ; 9: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29459873

RESUMO

Viral vectors represent an attractive technology for vaccine delivery. We exploited the integrase defective lentiviral vector (IDLV) as a platform for delivering relevant antigens within the context of the ADITEC collaborative research program. In particular, Influenza virus hemagglutinin (HA) and nucleoprotein (NP) were delivered by IDLVs while H1N1 A/California/7/2009 subunit vaccine (HAp) with or without adjuvant was used to compare the immune response in a murine model of immunization. In order to maximize the antibody response against HA, both IDLVs were also pseudotyped with HA (IDLV-HA/HA and IDLV-NP/HA, respectively). Groups of CB6F1 mice were immunized intramuscularly with a single dose of IDLV-NP/HA, IDLV-HA/HA, HAp alone, or with HAp together with the systemic adjuvant MF59. Six months after the vaccine prime all groups were boosted with HAp alone. Cellular and antibody responses to influenza antigens were measured at different time points after the immunizations. Mice immunized with HA-pseudotyped IDLVs showed similar levels of anti-H1N1 IgG over time, evaluated by ELISA, which were comparable to those induced by HAp + MF59 vaccination, but significantly higher than those induced by HAp alone. The boost with HAp alone induced an increase of antibodies in all groups, and the responses were maintained at higher levels up to 18 weeks post-boost. The antibody response was functional and persistent overtime, capable of neutralizing virus infectivity, as evaluated by hemagglutination inhibition and microneutralization assays. Moreover, since neuraminidase (NA)-expressing plasmid was included during IDLV preparation, immunization with IDLV-NP/HA and IDLV-HA/HA also induced functional anti-NA antibodies, evaluated by enzyme-linked lectin assay. IFNγ-ELISPOT showed evidence of HA-specific response in IDLV-HA/HA immunized animals and persistent NP-specific CD8+ T cell response in IDLV-NP/HA immunized mice. Taken together our results indicate that IDLV can be harnessed for producing a vaccine able to induce a comprehensive immune response, including functional antibodies directed toward HA and NA proteins present on the vector particles in addition to a functional T cell response directed to the protein transcribed from the vector.


Assuntos
Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Vacinas contra Influenza/administração & dosagem , Lentivirus/genética , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas do Core Viral/administração & dosagem , Animais , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , ELISPOT , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/sangue , Integrases/genética , Interferon gama , Camundongos , Infecções por Orthomyxoviridae/imunologia , Vacinação/métodos , Proteínas do Core Viral/imunologia
15.
BMC Infect Dis ; 5: 73, 2005 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16171519

RESUMO

BACKGROUND: Severe acute respiratory syndrome (SARS)-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. METHODS: The human synthetic single-chain fragment variable (scFv) ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N) protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. RESULTS: Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. CONCLUSION: The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Fragmentos de Imunoglobulinas/imunologia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Biblioteca de Peptídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Proteínas do Nucleocapsídeo de Coronavírus , Epitopos/genética , Humanos , Proteínas do Nucleocapsídeo/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
16.
PLoS One ; 9(9): e107377, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25210766

RESUMO

Many infectious agents infiltrate the host at the mucosal surfaces and then spread systemically. This implies that an ideal vaccine should induce protective immune responses both at systemic and mucosal sites to counteract invasive mucosal pathogens. We evaluated the in vivo systemic and mucosal antigen-specific immune response induced in mice by intramuscular administration of an integrase defective lentiviral vector (IDLV) carrying the ovalbumin (OVA) transgene as a model antigen (IDLV-OVA), either alone or in combination with sublingual adjuvanted OVA protein. Mice immunized intramuscularly with OVA and adjuvant were compared with IDLV-OVA immunization. Mice sublingually immunized only with OVA and adjuvant were used as a positive control of mucosal responses. A single intramuscular dose of IDLV-OVA induced functional antigen-specific CD8+ T cell responses in spleen, draining and distal lymph nodes and, importantly, in the lamina propria of the large intestine. These results were similar to those obtained in a prime-boost regimen including one IDLV immunization and two mucosal boosts with adjuvanted OVA or vice versa. Remarkably, only in groups vaccinated with IDLV-OVA, either alone or in prime-boost regimens, the mucosal CD8+ T cell response persisted up to several months from immunization. Importantly, following IDLV-OVA immunization, the mucosal boost with protein greatly increased the plasma IgG response and induced mucosal antigen-specific IgA in saliva and vaginal washes. Overall, intramuscular administration of IDLV followed by protein boosts using the sublingual route induced strong, persistent and complementary systemic and mucosal immune responses, and represents an appealing prime-boost strategy for immunization including IDLV as a delivery system.


Assuntos
Mucosa Intestinal/imunologia , Vacinação , Administração Sublingual , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Expressão Gênica , Células HEK293 , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Injeções Intramusculares , Integrases/genética , Lentivirus/enzimologia , Lentivirus/genética , Camundongos Endogâmicos C57BL , Ovalbumina/genética , Ovalbumina/imunologia , Vacinação/métodos
17.
Virology ; 395(1): 45-55, 2009 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19800648

RESUMO

Here we report a novel strategy for the induction of CD8(+) T cell adaptive immune response against viral and tumor antigens. This approach relies on high levels of incorporation in HIV-1 VLPs of a mutant of HIV-1 Nef (Nef(mut)) which can act as anchoring element for foreign proteins. By in vitro assay, we found that VLP-associated Nef(mut) is efficiently cross-presented by antigen presenting cells. Inoculation in mice of VLPs incorporating the HPV-16 E7 protein fused to Nef(mut) led to an anti-E7 CD8(+) T cell response much stronger than that elicited by E7 recombinant protein inoculated with incomplete Freund's adjuvant and correlating with well-detectable anti-E7 CTL activity. Most relevantly, mice immunized with Nef(mut)-E7 VLPs developed a protective immune response against tumors induced by E7 expressing tumor cells. These results make Nef(mut) VLPs a promising candidate for new vaccine strategies focused on the induction of CD8(+) T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Proteínas Oncogênicas Virais/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Imunidade Adaptativa , Animais , Linhagem Celular , Apresentação Cruzada , HIV-1/imunologia , Papillomavirus Humano 16/imunologia , Humanos , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Proteínas Recombinantes de Fusão/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas do Envelope Viral/imunologia
18.
Infect Agent Cancer ; 3: 9, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18582363

RESUMO

BACKGROUND: At present, seroreactivity is not a valuable parameter for diagnosis of Human Papillomavirus (HPV) infection but, it is potentially valuable as marker of viral exposure in elucidating the natural history of this infection. More data are needed to asses the clinical relevance of serological response to HPV. OBJECTIVES: The objective was to assess the clinical and epidemiological correlates of HPV-seroreactivity in a cohort of HIV-negative and HIV-positive women. METHODS: Seroreactivity of 96 women, evaluated in an ELISA test based on denatured HPV16 late (L) and early (E) antigens, was correlated with their clinical and epidemiological data previously collected for a multi-centre Italian study, HPV-PathogenISS study. RESULTS: No significant correlation was found between HPV DNA detection and seroreactivity. Women, current smokers showed significantly less seroreactivity to L antigens as compared with the non-smokers. HIV-positive women showed significantly less (66.7%) antibody response as compared with HIV-negative women (89.3%), with particularly impaired response to L antigens. Women, HIV-positive and current smokers, showed by far the lowest seroprevalence (33.3%) as compared to 75.9% among all other women (OR = 0.158; 95%CI 0.036-0.695, p = 0.014; Fisher's exact test). Importantly, this association did not loose its significance when controlled for confounding from age (continuous variable) in multivariate analysis or using Mantel-Haenszel test for age-groups. CONCLUSION: It is tempting to speculate that HIV-positive current smokers comprise a special high-risk group, with highly impaired immunological response that could prevent eradication of persistent HPV infections and thus contribute to development of CIN3/CC.

19.
Infect Agent Cancer ; 1: 6, 2006 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17150135

RESUMO

BACKGROUND: Human papillomaviruses (HPVs) are the primary etiological agents of cervical cancer and are also involved in the development of other tumours (skin, head and neck). Serological survey of the HPV infections is important to better elucidate their natural history and to disclose antigen determinants useful for vaccine development. At present, the analysis of the HPV-specific antibodies has not diagnostic value for the viral infections, and new approaches are needed to correlate the antibody response to the disease outcome. The aim of this study is to develop a novel ELISA, based on five denatured recombinant HPV16 proteins, to be used for detection HPV-specific antibodies. METHODS: The HPV16 L1, L2, E4, E6 and E7 genes were cloned in a prokaryotic expression vector and expressed as histidine-tagged proteins. These proteins, in a denatured form, were used in ELISA as coating antigens. Human sera were collected from women with abnormal PAP smear enrolled during an ongoing multicenter HPV-PathogenISS study in Italy, assessing the HPV-related pathogenetic mechanisms of progression of cervical cancer precursor lesions. Negative human sera were collected from patients affected by other infectious agents. All the HPV-positive sera were also subjected to an avidity test to assess the binding strength in the antigen-antibody complexes. RESULTS: Most of the sera showed a positive reactivity to the denatured HPV16 proteins: 82% of the sera from HPV16 infected women and 89% of the sera from women infected by other HPV genotypes recognised at least one of the HPV16 proteins. The percentages of samples showing reactivity to L1, L2 and E7 were similar, but only a few serum samples reacted to E6 and E4. Most sera bound the antigens with medium and high avidity index, suggesting specific antigen-antibody reactions. CONCLUSION: This novel ELISA, based on multiple denatured HPV16 antigens, is able to detect antibodies in women infected by HPV16 and it is not genotype-specific, as it detects antibodies also in women infected by other genital HPVs. The assay is easy to perform and has low cost, making it suitable for monitoring the natural history of HPV infections as well as for detecting pre-existing HPV antibodies in women who receive VLP-based HPV vaccination.

20.
J Med Virol ; 76(2): 137-42, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15834868

RESUMO

A new Coronavirus (SARS-CoV) is the aetiological agent of the severe acute respiratory syndrome (SARS). Because of the critical role played by serological assays for SARS diagnosis, an in-house ELISA based on SARS-CoV recombinant antigens was developed. The SARS-CoV nucleocapsid protein (N), three N fragments (N1, N2, and N3) and the intraviral domain of the membrane protein (M2) were cloned and expressed in Escherichia coli as histidine-tagged proteins. Six reference sera from SARS patients were used to detect virus-specific IgG in an ELISA using each recombinant protein as coating antigen. High-titre positive reactions were detected in all SARS positive sera. The specificity of the assay appears to be high as no positive reaction was detected in the sera of 20 healthy subjects and 73 patients with non-SARS, low-tract respiratory infections. Specific hyper-immune sera to SARS-CoV and the recombinant proteins, N, N1, N2, N3, and M2 were also generated in mice and rabbits. The specificity of these sera was confirmed by an immunocytochemical assay on biochips of SARS-CoV infected and uninfected cells.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais , Ensaio de Imunoadsorção Enzimática , Síndrome Respiratória Aguda Grave/diagnóstico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Animais , Antígenos Virais/genética , Proteínas M de Coronavírus , Proteínas do Nucleocapsídeo de Coronavírus , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Soros Imunes , Imunoglobulina G/sangue , Camundongos , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/imunologia , Coelhos , Proteínas Recombinantes , Sensibilidade e Especificidade , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA