Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 20(2): 1524-1553, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410276

RESUMO

Pulse seeds are nutritious and sustainable matrices with a high level of intrinsic microstructural complexity. They contain high-quality plant-based protein and substantial amounts of slowly digestible starch and dietary fiber. Starch and protein in pulses are located inside cotyledon cells that survive cooking and subsequent mechanical disintegration, hence preserving natural nutrient bioencapsulation. In this context, several authors have explored a number of techniques to isolate individual cotyledon cells from these seeds, aiming to unveil their digestive and physicochemical properties. In recent years, isolated pulse cotyledon cells are also being highlighted as promising novel ingredients that could improve the nutritional properties of traditionally consumed food products. Even more, they could enable to implement a strategy for increasing pulse intake in populations where these seeds have not been traditionally consumed. This review mainly focuses on the reported digestive, physicochemical, and technofunctional properties of pulse cotyledon cells isolated through different techniques, preceded by a descriptive summary of the nutritional properties, structural organization, and traditional process chain of pulse seeds. It also offers an outlook of research directions to take, based on the identified research gaps. All in all, it is clear that isolation of pulse cotyledon cells using diverse techniques constitutes a promising strategy for the development of pulse-based ingredients where natural bioencapsulation of macronutrients is preserved. However, much more research is needed at the level of ingredient characterization to better understand the effect of starting pulse seed material, isolation technique, and isolation conditions on the nutritional and functional properties of the finished product(s) where the isolated cells are (to be) used.


Assuntos
Cotilédone , Nutrientes , Culinária , Cotilédone/química , Fibras na Dieta/análise , Amido
2.
Compr Rev Food Sci Food Saf ; 20(6): 5698-5721, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34596322

RESUMO

The occurrence of nonenzymaticbrowning in fruit juices during storage is a major quality defect. It negatively affects consumer acceptance and consumption behavior and determines the shelf-life of these products. Although nonenzymatic browning of fruit juices has been the subject of research for a long time, the exact mechanism of the nonenzymatic browning reactions is not yet completely understood. This review paper aims to give an overview of the compounds and reactions playing a key role in nonenzymatic browning during the storage of fruit juices. The chemistry of the plausible reactions and their relative importance will be discussed. To better understand nonenzymatic browning, factors affecting these reactions will be reviewed and several strategies and methods to evaluate color changes and browning will be discussed. Nonenzymatic browning involves three main reactions: ascorbic acid degradation, acid-catalyzed sugar degradation, and Maillard-associated reactions. The most important NEB pathway depends on the matrix. Nonenzymatic browning is affected by many factors, such as the juice composition, the pH, the oxygen availability (packaging material), and the storage conditions. Nonenzymatic browning can thus be considered as a complex problem. To characterize color changes and browning and obtain insight into the browning mechanism of fruit juices, food scientists applied several approaches and strategies. These included the use of model systems with/without the addition of labeled compound and real systems as well as advanced analytical methods.


Assuntos
Sucos de Frutas e Vegetais , Reação de Maillard
3.
Compr Rev Food Sci Food Saf ; 20(4): 3690-3718, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34056842

RESUMO

Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.


Assuntos
Phaseolus , Culinária , Valor Nutritivo
4.
Compr Rev Food Sci Food Saf ; 20(5): 5067-5096, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402573

RESUMO

Pulses are increasingly being put forward as part of healthy diets because they are rich in protein, (slowly digestible) starch, dietary fiber, minerals, and vitamins. In pulses, nutrients are bioencapsulated by a cell wall, which mostly survives cooking followed by mechanical disintegration (e.g., mastication). In this review, we describe how different steps in the postharvest pulse value chain affect starch and protein digestion and the mineral bioaccessibility of pulses by influencing both their nutritional composition and structural integrity. Processing conditions that influence structural characteristics, and thus potentially the starch and protein digestive properties of (fresh and hard-to-cook [HTC]) pulses, have been reported in literature and are summarized in this review. The effect of thermal treatment on the pulse microstructure seems highly dependent on pulse type-specific cell wall properties and postharvest storage, which requires further investigation. In contrast to starch and protein digestion, the bioaccessibility of minerals is not dependent on the integrity of the pulse (cellular) tissue, but is affected by the presence of mineral antinutrients (chelators). Although pulses have a high overall mineral content, the presence of mineral antinutrients makes them rather poorly accessible for absorption. The negative effect of HTC on mineral bioaccessibility cannot be counteracted by thermal processing. This review also summarizes lessons learned on the use of pulses for the preparation of foods, from the traditional use of raw-milled pulse flours, to purified pulse ingredients (e.g., protein), to more innovative pulse ingredients in which cellular arrangement and bioencapsulation of macronutrients are (partially) preserved.


Assuntos
Minerais , Nutrientes , Culinária , Fibras na Dieta , Digestão
5.
Crit Rev Food Sci Nutr ; 60(5): 826-843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30632768

RESUMO

Plant-based foods gain more importance since they play a key role in sustainable, low-meat and healthy diets. In developing countries, these food products, especially legumes and cereals, are important staple foods. Nevertheless, the question arises on how efficient they are to deliver minerals and if it is useful to encourage their consumption to reduce the prevalence of mineral deficiencies? This review paper focuses on the discrepancy between the mineral content and the amount of minerals that can be released and absorbed from plant-based foods during human digestion which can be attributed to several inherent factors such as the presence of mineral antinutrients (phytic acid, polyphenols and dietary fiber) and physical barriers (surrounding macronutrients and cell wall). Further, this review paper summarizes the effects of different processing techniques (milling, soaking, dehulling, fermentation, germination and thermal processing) on mineral bioaccessibility and bioavailability of plant-based foods. The positive impact of these techniques mostly relies on the fact that antinutrients levels are reduced due to removal of fractions rich in antinutrients and/or due to their leaching into the processing liquid. Although processing can have a positive effect, it also can induce leaching out of minerals and a reduced mineral bioaccessibility and bioavailability.


Assuntos
Produtos Agrícolas/metabolismo , Manipulação de Alimentos , Minerais/metabolismo , Disponibilidade Biológica , Grão Comestível/metabolismo , Fabaceae/metabolismo , Humanos , Ácido Fítico/metabolismo
6.
Br J Nutr ; 122(4): 388-399, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31266547

RESUMO

In the present study, we evaluated the effect of process-induced common bean hardness on structural properties of in vivo generated boluses and the consequences for in vitro starch digestion. Initially, the impact of human mastication on the particle size distribution (PSD) of oral boluses from common beans with different process-induced hardness levels was investigated through a mastication study. Then the effect of structural properties of selected boluses on in vitro starch digestion kinetics was assessed. For a particular process-induced hardness level, oral boluses had similar PSD despite differences in masticatory parameters between participants of the mastication study. At different hardness levels, a clear effect of processing (P<0·0001) was observed. However, the effect of mastication behaviour (P=0·1141) was not significant. Two distinctive fractions were present in all boluses. The first one was a cotyledon-rich fraction consisting of majorly small particles (40-125 µm), which could be described as individual cells based on microscopic observations. This fraction increased with a decrease in process-induced hardness. The second fraction (>2000 µm) mostly contained seed coat material and did not change based on hardness levels. The in vitro starch digestion kinetics of common bean boluses was only affected by process-induced hardness. After kinetic modelling, significant differences were observed between the reaction rate constant of boluses generated from the hardest beans and those obtained from softer ones. Overall this work demonstrated that the in vitro nutritional functionality of common beans is affected to a greater extent by structural properties induced by processing than by mechanical degradation in the mouth.


Assuntos
Digestão , Amido/metabolismo , Dureza , Humanos , Cinética , Mastigação , Tamanho da Partícula , Phaseolus
7.
J Sci Food Agric ; 98(9): 3437-3445, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29280150

RESUMO

BACKGROUND: Accurate shelf-life dating of food products is crucial for consumers and industries. Therefore, in this study we applied a science-based approach for shelf-life assessment, including accelerated shelf-life testing (ASLT), acceptability testing and the screening of analytical attributes for fast shelf-life predictions. Shelf-stable strawberry juice was selected as a case study. RESULTS: Ambient storage (20 °C) had no effect on the aroma-based acceptance of strawberry juice. The colour-based acceptability decreased during storage under ambient and accelerated (28-42 °C) conditions. The application of survival analysis showed that the colour-based shelf-life was reached in the early stages of storage (≤11 weeks) and that the shelf-life was shortened at higher temperatures. None of the selected attributes (a* and ΔE* value, anthocyanin and ascorbic acid content) is an ideal analytical marker for shelf-life predictions in the investigated temperature range (20-42 °C). Nevertheless, an overall analytical cut-off value over the whole temperature range can be selected. CONCLUSIONS: Colour changes of strawberry juice during storage are shelf-life limiting. Combining ASLT with acceptability testing allowed to gain faster insight into the change in colour-based acceptability and to perform shelf-life predictions relying on scientific data. An analytical marker is a convenient tool for shelf-life predictions in the context of ASLT. © 2017 Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Rotulagem de Alimentos , Armazenamento de Alimentos , Fragaria , Sucos de Frutas e Vegetais , Antocianinas/análise , Ácido Ascórbico/análise , Cor , Conservação de Alimentos , Olfato , Temperatura , Fatores de Tempo
8.
Compr Rev Food Sci Food Saf ; 17(6): 1576-1594, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33350138

RESUMO

Pectin is an anionic cell wall polysaccharide which is known to interact with divalent cations via its nonmethylesterified galacturonic acid units. Due to its cation-binding capacity, extracted pectin is frequently used for several purposes, such as a gelling agent in food products or as a biosorbent to remove toxic metals from waste water. Pectin can, however, possess a large variability in molecular structure, which influences its cation-binding capacity. Besides the pectin structure, several extrinsic factors, such as cation type or pH, have been shown to define the cation binding of pectin. This review paper focuses on the research progress in the field of pectin-divalent cation interactions and associated functional properties. In addition, it addresses the main research gaps and challenges in order to clearly understand the influence of pectin structural properties on its divalent cation-binding capacity and associated functionalities. This review reveals that many factors, including pectin molecular structure and extrinsic factors, influence pectin-cation interactions and its associated functionalities, which makes it difficult to predict the pectin-cation-binding capacity. Despite the limited information available, determination of the cation-binding capacity of pectins with distinct structural properties using equilibrium adsorption experiments or isothermal titration calorimetry is a promising tool to gain fundamental insights into pectin-cation interactions. These insights can then be used in targeted pectin structural modification, in order to optimize the cation-binding capacity and to promote pectin-cation interactions, for instance for a structure build-up in food products without compromising the mineral nutrition value.

9.
J Agric Food Chem ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012491

RESUMO

Brassica oleracea and Allium vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable. However, the vegetable processing chain, which consists of multiple steps (e.g., pretreatment, preservation, storage, preparation), can impact the nutritional quality of these vegetables corresponding to the nature of the health-related compounds and their susceptibility to (bio)chemical conversions. Since information about the impact of the vegetable processing chain is scattered per compound or processing step, this review targets an integration of the state of the art and discusses needs for future research. Starting with a discussion on substrate-enzyme location within the vegetable matrix, an overview is provided of the impact and potential of processing, encompassing a wide range of (nonenzymatic) conversions.

10.
Food Funct ; 15(2): 591-607, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38098462

RESUMO

In the context of adequately feeding the rising older population, lentils have an important potential as sources of (plant-based) protein as well as slowly digestible bio-encapsulated starch and fibre. This study evaluated in vitro digestion of protein and starch in lentils under conditions representing the gastrointestinal tract of older adults. Both static and semi-dynamic simulations were applied to analyze the effect of specific gastrointestinal conditions (healthy versus older adult) on macronutrient digestion patterns. Gastric proteolysis was strongly dependent on applied gastric pH (gradient), leading to a lower extent of protein hydrolysis for simulations relevant for older adults. Fewer and smaller (lower degree of polymerization, DP) bioaccessible peptides were formed during gastric proteolysis under older adult compared to healthy adult conditions. These differences, developed during the in vitro gastric phase, were compensated during small intestinal digestion, yielding similar final proteolysis levels regardless of the applied simulation conditions. In contrast, in the presence of saliva, amylolysis was generally accelerated under older adult conditions. Moreover, the current work highlighted the importance of considering saliva (or salivary amylase) incorporation in simulations where the applied gastric pH (gradient) allows salivary amylase activity. Under both healthy and older adult conditions, in vitro starch hydrolysis bio-encapsulated in cotyledon cells of cooked lentils was attenuated, compared to a white bread reference.


Assuntos
Lens (Planta) , Amido , Amido/metabolismo , Proteólise , Lens (Planta)/metabolismo , Digestão , Amilases/metabolismo
11.
Food Chem ; 445: 138644, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354638

RESUMO

Vegetables are frequently processed before consumption. However, vegetable functionalization continues beyond ingestion as the human digestive tract exposes vegetable products to various conditions (e.g. elevated temperature, pH alterations, enzymes, electrolytes, mechanical disintegration) which can affect the stability of micronutrients and phytochemicals. Besides the extent to which these compounds withstand the challenges posed by digestive conditions, it is equally important to consider their accessibility for potential absorption by the body. Therefore, this study investigated the impact of static in vitro digestion on the stability (i.e. concentration) and bioaccessibility of vitamin C, vitamin K1, glucosinolates, S-alk(en)yl-l-cysteine sulfoxides (ACSOs) and carotenoids in Brussels sprouts (Brassica oleracea var. gemmifera) and leek (Allium ampeloprasum var. porrum). Water-soluble compounds, glucosinolates and ACSOs, remained stable during digestion while vitamin C decreased by >48%. However, all water-soluble compounds were completely bioaccessible. Lipid-soluble compounds were also stable during digestion but were only bioaccessible for 26-81%.


Assuntos
Brassica , Cebolas , Humanos , Cebolas/química , Micronutrientes , Glucosinolatos/análise , Brassica/química , Verduras , Ácido Ascórbico , Vitaminas , Digestão , Água , Compostos Fitoquímicos
12.
Food Res Int ; 175: 113764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129057

RESUMO

Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables. Therefore, this work studied the impact of pretreatment (relatively intact versus pureed vegetable systems), pasteurization and subsequent refrigerated storage (kinetic evaluation) on multiple health-related compounds (vitamin C, vitamin K1, carotenoids, glucosinolates and S-alk(en)yl-L-cysteine sulfoxides (ACSOs)) in Brussels sprouts and leek. It could be shown that differences introduced by different types of pretreatment were not nullified during pasteurization and refrigerated storage. Clearly, enzymatic conversions controlled during pretreatment resulted in different health-related compound profiles still observable after pasteurization. Moreover, about -42% and -100% relative concentration differences of ACSOs and dehydroascorbic acid, respectively, were detected immediately after pasteurization, while glucosinolates concentrations decreased by about 47% during refrigerated storage. All other compounds were stable during pasteurization and refrigerated storage.


Assuntos
Brassica , Cebolas , Glucosinolatos , Brassica/química , Ácido Ascórbico/análise , Pasteurização , Verduras
13.
Food Res Int ; 165: 112471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869484

RESUMO

The rate liming step of bean softening during cooking was evaluated. Red kidney beans (fresh/non-aged and aged) were cooked at different temperatures (70-95 °C) and their texture evolution established. Softening of beans (loss of hard texture) with cooking and increasing cooking temperature was evident at ≥ 80 °C more so for non-aged than aged beans, evidencing hard-to-cook development during storage. Beans at each cooking time and temperature were subsequently classified into narrow texture ranges and bean cotyledons in the most frequent texture class evaluated for the extent of starch gelatinization, protein denaturation and pectin solubilization. During cooking, starch gelatinization was shown to precede pectin solubilization and protein denaturation, with these reactions progressing faster and to a greater extent with increasing cooking temperature. At 95 °C for instance (practical bean processing temperature), complete starch gelatinization and protein denaturation is attained earlier (∼10 and 60 min cooking, respectively and at comparable time moments for both non-aged and aged beans) than plateau bean texture (∼120 and 270 min for non-aged and aged beans)/plateau pectin solubilization. The extent of pectin solubilization in the cotyledons was consequently most correlated (negatively, r = 0.95) with and plays the most significant role (P < 0.0001) in directing the relative texture of beans during cooking. Ageing was shown to significantly retard bean softening. Protein denaturation plays a less significant role (P = 0.007) while the contribution of starch gelatinization is insignificant (P = 0.181). Thermo-solubilization of pectin in bean cotyledons is therefore the rate limiting step of bean softening towards attaining a palatable texture during cooking.


Assuntos
Pectinas , Verduras , Desnaturação Proteica , Amido
14.
Foods ; 12(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36766054

RESUMO

Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation.

15.
Food Chem ; 404(Pt A): 134531, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228478

RESUMO

During adverse postharvest storage of Red haricot beans, the inositol phosphate content, particularly InsP6, decreased significantly, along with a significant increase in InsP5. Using a texture-based classification approach, the InsP6 content in cotyledons was shown an indicator for the extent of hard-to-cook (HTC) development during bean aging. This textural defect development was predominated by storage-induced InsP6 degradation, rather than phytate interconversions during soaking. Ca cations, released during storage, did not leach out significantly during subsequent soaking, suggesting that they were bound with the cell wall pectin in cotyledons, while Mg cations were mostly leached out into the soaking water due to their weak binding capacity to the pectin, and the cell membrane damages developed during HTC. Results obtained herein provide evidence for the pectin-cation-phytate mechanism in textural hardening (and its distribution after cooking) of common beans, and call for a more detailed Ca-relocation study during postharvest storage, soaking and cooking.


Assuntos
Phaseolus , Phaseolus/química , Ácido Fítico/análise , Sementes/química , Temperatura Alta , Culinária/métodos , Pectinas/química , Minerais/análise
16.
Food Chem ; 418: 135709, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37023667

RESUMO

Cellular pulse ingredients are increasingly being studied but little knowledge on their proteolysis patterns upon digestion is available. This study investigated a size exclusion chromatography (SEC) approach to study in vitro protein digestion in chickpea and lentil powders, providing novel insights into proteolysis kinetics and the evolution of molecular weight distributions in the (solubilized) supernatant and (non-solubilized) pellet fractions. For the quantification of proteolysis, SEC-based analysis was compared to the commonly used OPA (o-phthaldialdehyde) approach and nitrogen solubilized upon digestion, leading to highly correlated proteolysis kinetics. Generally, all approaches confirmed that microstructure dictated proteolysis kinetics. However, SEC analysis delivered an additional level of molecular insight. For the first time, SEC revealed that while bioaccessible fractions reached a plateau in the small intestinal phase (around 45-60 min), proteolysis continued in the pellet, forming smaller but mostly insoluble peptides. SEC elutograms showed pulse-specific proteolysis patterns, unidentified using other current state-of-the-art methods.


Assuntos
Digestão , Peptídeos , Proteólise , Pós , Peptídeos/química , Cromatografia em Gel
17.
Food Res Int ; 168: 112785, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120232

RESUMO

The digestion of lipids in the human body has several health and nutritional implications. Lipid digestion is an interfacial phenomenon meaning that water-soluble lipases need to first adsorb to the oil-water interface before enzymatic conversions can start. The digestion of lipids mainly occurs on colloidal structures dispersed in water, such as oil-in-water (o/w) emulsions, which can be designed during food formulation/processing or structured during digestion. From a food design perspective, different in vitro studies have demonstrated that the kinetics of lipid digestion can be influenced by emulsion properties. However, most of these studies have been performed with pancreatic enzymes to simulate lipolysis in the small intestine. Only few studies have dealt with lipid digestion in the gastric phase and its subsequent impact on intestinal lipolysis. In this aspect, this review compiles information on the physiological aspects of gastric lipid digestion. In addition, it deals with colloidal and interfacial aspects starting from emulsion design factors and how they evolve during in vitro digestion. Finally, molecular mechanisms describing gastric lipolysis are discussed.


Assuntos
Lipídeos , Lipólise , Humanos , Emulsões/química , Lipídeos/química , Digestão , Água/química
18.
Anim Nutr ; 12: 151-158, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683878

RESUMO

In vitro digestion studies demonstrate large potential to gain more and quicker insights into the underlying mechanisms of feed additives, allowing the optimization of feed design. Unfortunately, current in vitro digestion models relevant for broiler chickens lack sufficient description in terms of protocols and standardisation used. Furthermore, no distinction is made between the different life phases of these animals (starter, grower, and finisher). Hence, our research aimed to establish adapted in vitro digestion conditions, corresponding to the 3 life phases in broilers, with specific focus on lipid digestion. The effect of 3 different bile salt concentrations of 2, 10, and 20 mM, and 3 different lipase activities of 5, 20, and 100 U/mL, on in vitro lipid digestion kinetics were evaluated using a full factorial design. These values were selected to represent starter, grower, and finisher birds, respectively. Our findings showed that the extent of lipid digestion was mainly influenced by lipase activity. The rate of lipid digestion was affected by an interplay between bile salt concentration and lipase activity, due to possible lipase inhibition at certain bile salt concentrations. Overall, this work resulted in 3 in vitro lipid digestion models representative for starter, grower, and finisher birds. In conclusion, this research showed the impact of adapted in vitro digestion conditions on lipid digestion kinetics and thus the need for these conditions relevant for each life phase of broilers.

19.
Food Res Int ; 169: 112864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254313

RESUMO

Processing can affect (bio)chemical conversions in vegetables and can act on their volatile properties accordingly. In this study, the integrated effect of pretreatment and pasteurization on the volatile profile of leek and Brussels sprouts and the change of this profile upon refrigerated storage were investigated. Pretreatments were specifically selected to steer biochemical reactivities to different extents. Volatile profiles were analyzed by headspace-solid phase microextraction-gas chromatography-mass spectrometry. For both vegetables, it was observed that different pretreatments prior to a pasteurization step led to diverse volatile profiles. The differences in volatile profiles observed in the different samples were presumably attributed to the different degrees of enzymatic conversions, further conversions of enzymatically formed products and thermally induced reactivities. Interestingly, the observed initial relative differences between volatile profiles of differently pretreated pasteurized samples were still observed after a refrigerated storage of 4 weeks at 4 °C. In conclusion, refrigerated storage only limitedly affected the resulting volatile profile.


Assuntos
Brassica , Cebolas , Brassica/química , Verduras/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pasteurização
20.
Food Funct ; 13(6): 3206-3219, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35212347

RESUMO

This study investigated the in vitro digestion of purified pea fractions (protein isolate and starch) in sponge cakes when compared to unrefined pea flour and to the whole wheat flour and purified maize starch commonly used in the food industry. Proteins in the wheat cake were hydrolysed more rapidly than those in cakes made with either pea flour or a combination of pea proteins and purified starch. In absolute terms, however, more readily bioaccessible protein was released from these pea cakes (by around 40%). By contrast, cakes containing wheat flour or maize starch were more susceptible to amylolysis compared to those based on pea starch in the form of the purified ingredient or whole flour. This could be attributed to a higher proportion of amylose and resistant starch in the pea cakes as well as structural characteristics that might have decelerated enzyme-substrate interactions. Interestingly, similar digestion patterns were observed regarding the purified pea ingredients and unrefined whole pea flour. It was therefore concluded that pea ingredients, and particularly the less purified and thus more sustainable whole pea flour, are promising plant-based alternatives for use in gluten-free baked products.


Assuntos
Digestão , Alimentos , Proteínas de Ervilha , Pisum sativum , Amido , Amilose/análise , Dieta Livre de Glúten , Farinha , Ingredientes de Alimentos , Técnicas In Vitro , Proteínas de Ervilha/química , Proteólise , Amido Resistente , Amido/química , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA