Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(8): 5273-5280, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38980285

RESUMO

Coiled coils, commonly found in native proteins, are helical motifs important for mediating intermolecular interactions. While coiled coils are attractive for use in new therapies and biomaterials, the lack of enzymatic stability of naturally occurring l-peptides may limit their implementation in biological environments. d-peptides are of interest for biomedical applications as they are resistant to enzymatic degradation and recent reports indicate that stereochemistry-driven interactions, achieved by blending d- and l-peptides, yield access to a greater range of binding affinities and a resistance to enzymatic degradation compared to l-peptides alone. To our knowledge, this effect has not been studied in coiled coils. Here, we investigate the effects of blending heterochiral E/K coiled coils, which are a set of coiled coils widely used in biomaterials. We found that we needed to redesign the coiled coils from a repeating pattern of seven amino acids (heptad) to a repeating pattern of 11 amino acids (hendecad) to make them more amenable to heterochiral complex formation. The redesigned hendecad coiled coils form both homochiral and heterochiral complexes, where the heterochiral complexes have stronger heats of binding between the constituent peptides and are more enzymatically stable than the analogous homochiral complexes. Our results highlight the ability to design peptides to make them amenable to heterochiral complexation, so as to achieve desirable properties like increased enzymatic stability and stronger binding. Looking forward, understanding how to engineer peptides to utilize stereochemistry as a materials design tool will be important to the development of next-generation therapeutics and biomaterials.


Assuntos
Peptídeos , Peptídeos/química , Estabilidade Enzimática , Ligação Proteica
2.
J Am Chem Soc ; 145(33): 18468-18476, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37566784

RESUMO

Stereocomplexation, or specific interactions among complementary stereoregular macromolecules, is burgeoning as an increasingly impactful design tool, exerting exquisite control of material structure and properties. Since stereocomplexation of polymers produces remarkable transformations in mechanics, morphology, and degradation, we sought to leverage stereocomplexation to tune these properties in peptide-based biomaterials. We found that blending the pentapeptides l- and d-KYFIL triggers dual mechanical and morphological transformations from stiff fibrous hydrogels into less stiff networks of plates, starkly contrasting prior reports that blending l- and d-peptides produces stiffer fibrous hydrogels than the individual constituents. The morphological transformation of KYFIL in phosphate-buffered saline from fibers that entangle into hydrogels to plates that cannot entangle explains the accompanying mechanical transformation. Moreover, the blends shield l-KYFIL from proteolytic degradation, producing materials with comparable proteolytic stability to d-KYFIL but with distinct 2D plate morphologies that in biomaterials may promote unique therapeutic release profiles and cell behavior. To confirm that these morphological, mechanical, and stability changes arise from differences in molecular packing as in polymer stereocomplexation, we acquired X-ray diffraction patterns, which showed l- and d-KYFIL to be amorphous and their blends to be crystalline. Stereocomplexation is particularly apparent in pure water, where l- and d-KYFIL are soluble random coils, and their blends form ß-sheets and gel within minutes. Our results highlight the role of molecular details, such as peptide sequence, in determining the material properties resulting from stereocomplexation. Looking forward, the ability of stereocomplexation to orchestrate supramolecular assembly and tune application-critical properties champions stereochemistry as a compelling design consideration.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Hidrogéis/química , Materiais Biocompatíveis/química , Peptídeos/química , Polímeros/química , Substâncias Macromoleculares/química
3.
Polym Chem ; 14(4): 421-431, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37842180

RESUMO

As hydrolytically-labile, traditionally-cationic polymers, poly(ß-amino ester)s (PBAEs) adeptly complex anionic compounds such as nucleic acids, and release their cargo as the polymer degrades. To engineer fully-degradable polyelectrolyte complexes and delivery vehicles for cationic therapeutics, we sought to invert PBAE net charge to generate net anionic PBAEs. Since PBAEs can carry up to a net charge of +1 per tertiary amine, we synthesized a series of alkyne-functionalized PBAEs that allowed installation of 2 anionic thiol-containing molecules per tertiary amine via a radical thiol-yne reaction. Finding dialysis in aqueous solution to lead to PBAE degradation, we developed a preparative size exclusion chromatography method to remove unreacted thiol from the net anionic PBAEs without triggering hydrolysis. The net anionic PBAEs display non-monotonic solution behavior as a function of pH, being more soluble at pH 4 and 10 than in intermediate pH ranges. Like cationic PBAEs, these net anionic PBAEs degrade in aqueous environments with hydrophobic content-dependent hydrolysis, as determined by 1H NMR spectroscopy. Further, these net anionic PBAEs form complexes with the cationic peptide (GR)10, which disintegrate over time as the polymer hydrolyzes. Together, these studies outline a synthesis and purification route to make previously inaccessible net anionic PBAEs with tunable solution and degradation behavior, allowing for user-determined complexation and release rates and providing opportunities for degradable polyelectrolyte complexes and cationic therapeutic delivery.

4.
Acta Biomater ; 140: 43-75, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710626

RESUMO

A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and ß-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Matriz Extracelular , Hidrogéis/química , Hidrogéis/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Engenharia Tecidual/métodos
5.
Biomater Sci ; 9(12): 4374-4387, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34076655

RESUMO

The ability to spatiotemporally control the presentation of relevant biomolecules in synthetic culture systems has gained significant attention as researchers strive to recapitulate the endogenous extracellular matrix (ECM) in vitro. With the biochemical composition of the ECM constantly in flux, the development of platforms that allow for user-defined control of bioactivity is desired. Here, we reversibly conjugate bioactive molecules to hydrogel-based substrates through supramolecular coiled coil complexes that form between complementary peptides. Our system employs a thiolated peptide for tethering to hydrogel surfaces (T-peptide) through a spatially-controlled photomediated click reaction. The complementary association peptide (A-peptide), containing the bioactive domain, forms a heterodimeric coiled coil complex with the T-peptide. Addition of a disruptor peptide (D-peptide) engineered specifically to target the A-peptide outcompetes the T-peptide for binding, and removes the A-peptide and the attached bioactive motif from the scaffold. We use this platform to demonstrate spatiotemporal control of biomolecule presentation within hydrogel systems in a repeatable process that can be extended to adhesive motifs for cell culture. NIH 3T3 fibroblasts seeded on hyaluronic acid hydrogels and polyethylene glycol-based fibrous substrates supramolecularly functionalized with an RGD motif demonstrated significant cell spreading over their nonfunctionalized counterparts. Upon displacement of the RGD motif, fibroblasts occupied less area and clustured on the substrates. Taken together, this platform enables facile user-defined incorporation and removal of biomolecules in a repeatable process for controlled presentation of bioactivity in engineered culture systems.


Assuntos
Matriz Extracelular , Hidrogéis , Ácido Hialurônico , Peptídeos , Polietilenoglicóis
6.
Biomater Sci ; 9(15): 5069-5091, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096936

RESUMO

As antimicrobial resistance becomes an increasing threat, bringing significant economic and health burdens, innovative antimicrobial treatments are urgently needed. While antimicrobial peptides (AMPs) are promising therapeutics, exhibiting high activity against resistant bacterial strains, limited stability and toxicity to mammalian cells has hindered clinical development. Attaching AMPs to polymers provides opportunities to present AMPs in a way that maximizes bacterial killing while enhancing compatibility with mammalian cells, stability, and solubility. Conjugation of an AMP to a linear hydrophilic polymer yields the desired improvements in stability, mammalian cell compatibility, and solubility, yet often markedly reduces bactericidal effects. Non-linear polymer architectures and supramolecular assemblies that accommodate multiple AMPs per polymer chain afford AMP-polymer conjugates that strike a superior balance of antimicrobial activity, mammalian cell compatibility, stability, and solubility. Therefore, we review the design criteria, building blocks, and synthetic strategies for engineering AMP-polymer conjugates, emphasizing the connection between molecular architecture and antimicrobial performance to inspire and enable further innovation to advance this emerging class of biomaterials.


Assuntos
Anti-Infecciosos , Polímeros , Engenharia de Proteínas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA