Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(50): 21350-21363, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817994

RESUMO

The inherent atomistic precision of synthetic chemistry enables bottom-up structural control over quantum bits, or qubits, for quantum technologies. Tuning paramagnetic molecular qubits that feature optical-spin initialization and readout is a crucial step toward designing bespoke qubits for applications in quantum sensing, networking, and computing. Here, we demonstrate that the electronic structure that enables optical-spin initialization and readout for S = 1, Cr(aryl)4, where aryl = 2,4-dimethylphenyl (1), o-tolyl (2), and 2,3-dimethylphenyl (3), is readily translated into Cr(alkyl)4 compounds, where alkyl = 2,2,2-triphenylethyl (4), (trimethylsilyl)methyl (5), and cyclohexyl (6). The small ground state zero field splitting values (<5 GHz) for 1-6 allowed for coherent spin manipulation at X-band microwave frequency, enabling temperature-, concentration-, and orientation-dependent investigations of the spin dynamics. Electronic absorption and emission spectroscopy confirmed the desired electronic structures for 4-6, which exhibit photoluminescence from 897 to 923 nm, while theoretical calculations elucidated the varied bonding interactions of the aryl and alkyl Cr4+ compounds. The combined experimental and theoretical comparison of Cr(aryl)4 and Cr(alkyl)4 systems illustrates the impact of the ligand field on both the ground state spin structure and excited state manifold, laying the groundwork for the design of structurally precise optically addressable molecular qubits.

2.
Phys Rev Lett ; 126(21): 216402, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114841

RESUMO

Behaving like atomically precise two-dimensional quantum wells with non-negligible dielectric contrast, the layered hybrid organic-inorganic lead halide perovskites (HOIPs) have strong electronic interactions leading to tightly bound excitons with binding energies on the order of 500 meV. These strong interactions suggest the possibility of larger excitonic complexes like trions and biexcitons, which are hard to study numerically due to the complexity of the layered HOIPs. Here, we propose and parametrize a model Hamiltonian for excitonic complexes in layered HOIPs and we study the correlated eigenfunctions of trions and biexcitons using a combination of diffusion Monte Carlo and very large variational calculations with explicitly correlated Gaussian basis functions. Binding energies and spatial structures of these complexes are presented as a function of the layer thickness. The trion and biexciton of the thinnest layered HOIP have binding energies of 35 and 44 meV, respectively, whereas a single exfoliated layer is predicted to have trions and biexcitons with equal binding energies of 48 meV. We compare our findings to available experimental data and to that of other quasi-two-dimensional materials.

3.
J Chem Phys ; 144(24): 244116, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27369506

RESUMO

Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

4.
J Chem Phys ; 144(8): 084113, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931687

RESUMO

We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

5.
J Phys Chem A ; 119(50): 12015-27, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26090556

RESUMO

Quantum mechanical methods for calculating rate constants are often intractable for reactions involving many atoms. Semiclassical transition state theory (SCTST) offers computational advantages over these methods but nonetheless scales exponentially with the number of degrees of freedom (DOFs) of the system. Here we present a method with more favorable scaling, reduced-dimensionality SCTST (RD SCTST), that treats only a subset of DOFs of the system explicitly. We apply it to three H abstraction and exchange reactions for which two-dimensional potential energy surfaces (PESs) have previously been constructed and evaluated using RD quantum scattering calculations. We differentiated these PESs to calculate harmonic frequencies and anharmonic constants, which were then used to calculate cumulative reaction probabilities and rate constants by RD SCTST. This method yielded rate constants in good agreement with quantum scattering results. Notably, it performed well for a heavy-light-heavy reaction, even though it does not explicitly account for corner-cutting effects. Recent extensions to SCTST that improve its treatment of deep tunneling were also evaluated within the reduced-dimensionality framework. The success of RD SCTST in this study suggests its potential applicability to larger systems.

6.
ACS Appl Mater Interfaces ; 16(15): 18790-18799, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587488

RESUMO

A rechargeable battery that employs a Li metal anode requires that Li be plated in a uniform fashion during charging. In "anode-free" configurations, this plating will occur on the surface of the Cu current collector (CC) during the initial cycle and in any subsequent cycle where the capacity of the cell is fully accessed. Experimental measurements have shown that the plating of Li on Cu can be inhomogeneous, which can lower the efficiency of plating and foster the formation of Li dendrites. The present study employs a combination of first-principles calculations and sessile drop experiments to characterize the thermodynamics and adhesive (i.e., wetting) properties of interfaces involving Li and other phases present on or near the CC. Interfaces between Li and Cu, Cu2O, and Li2O are considered. The calculations predict that both Cu and Cu2O surfaces are lithiophilic. However, sessile drop measurements reveal that Li wetting occurs readily only on pristine Cu. This apparent discrepancy is explained by the occurrence of a spontaneous conversion reaction, 2 Li + Cu2O → Li2O + 2 Cu, that generates Li2O as one of its products. Calculations and sessile drop measurements show that Li does not wet (newly formed) Li2O. Hence, Li that is deposited on a Cu CC where surface oxide species are present will encounter a compositionally heterogeneous substrate comprising lithiophillic (Cu) and lithiophobic (Li2O) regions. These initial heterogeneities have the potential to influence the longer-term behavior of the anode under cycling. In sum, the present study provides insights into the early stage processes associated with Li plating in anode-free batteries and describes mechanisms that contribute to inefficiencies in their operation.

7.
J Chem Theory Comput ; 18(12): 7218-7232, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36345915

RESUMO

We present a stable and systematically improvable quantum Monte Carlo (QMC) approach to calculating excited-state energies, which we implement using our fast randomized iteration method for the full configuration interaction problem (FCI-FRI). Unlike previous excited-state quantum Monte Carlo methods, our approach, which is based on an asymmetric variant of subspace iteration, avoids the use of dot products of random vectors and instead relies upon trial vectors to maintain orthogonality and estimate eigenvalues. By leveraging recent advances, we apply our method to calculate ground- and excited-state energies of challenging molecular systems in large active spaces, including the carbon dimer with 8 electrons in 108 orbitals (8e,108o), an oxo-Mn(salen) transition metal complex (28e,28o), ozone (18e,87o), and butadiene (22e,82o). In the majority of these test cases, our approach yields total excited-state energies that agree with those from state-of-the-art methods─including heat-bath CI, the density matrix renormalization group approach, and FCIQMC─to within sub-milliHartree accuracy. In all cases, estimated excitation energies agree to within about 0.1 eV.


Assuntos
Carbono , Complexos de Coordenação , Elétrons , Temperatura Alta , Método de Monte Carlo
8.
J Chem Theory Comput ; 16(9): 5572-5585, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32697909

RESUMO

We present three modifications to our recently introduced fast randomized iteration method for full configuration interaction (FCI-FRI) and investigate their effects on the method's performance for Ne, H2O, and N2. The initiator approximation, originally developed for full configuration interaction quantum Monte Carlo, significantly reduces statistical error in FCI-FRI when few samples are used in compression operations, enabling its application to larger chemical systems. The semistochastic extension, which involves exactly preserving a fixed subset of elements in each compression, improves statistical efficiency in some cases but reduces it in others. We also developed a new approach to sampling excitations that yields consistent improvements in statistical efficiency and reductions in computational cost. We discuss possible strategies based on our findings for improving the performance of stochastic quantum chemistry methods more generally.

9.
J Chem Theory Comput ; 15(9): 4834-4850, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390198

RESUMO

We introduce a family of methods for the full configuration interaction problem in quantum chemistry, based on the fast randomized iteration (FRI) framework [Lim, L.-H.; Weare, J. SIAM Rev. 2017, 59, 547; DOI: 10.1137/15M1040827 ]. These methods, which we term "FCI-FRI", stochastically impose sparsity during iterations of the power method and can be viewed as a generalization of full configuration interaction quantum Monte Carlo (FCIQMC) without walkers. In addition to the multinomial scheme commonly used to sample excitations in FCIQMC, we present a systematic scheme where excitations are not sampled independently. Performing ground-state calculations on five small molecules at fixed cost, we find that the systematic FCI-FRI scheme is 11-45 times more statistically efficient than the multinomial FCI-FRI scheme, which is in turn 1.4-178 times more statistically efficient than the original FCIQMC algorithm.

10.
J Chem Theory Comput ; 13(9): 4034-4042, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28763215

RESUMO

We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S1/S2 interconversion dynamics of pyrazine after UV photoexcitation to the S2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA