Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 158(4): 849-860, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126789

RESUMO

Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts ß-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the ß-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total ß-globin synthesis, with a reciprocal reduction in adult ß-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.


Assuntos
Cromatina/metabolismo , Hemoglobina Fetal/genética , Técnicas Genéticas , Região de Controle de Locus Gênico , Ativação Transcricional , Globinas beta/genética , Animais , Antígenos CD34/metabolismo , Cromatina/química , Embrião de Mamíferos/metabolismo , Eritroblastos/metabolismo , Hemoglobinopatias/genética , Hemoglobinopatias/terapia , Humanos , Camundongos , Cultura Primária de Células
2.
Cell ; 149(6): 1233-44, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682246

RESUMO

Chromatin loops juxtapose distal enhancers with active promoters, but their molecular architecture and relationship with transcription remain unclear. In erythroid cells, the locus control region (LCR) and ß-globin promoter form a chromatin loop that requires transcription factor GATA1 and the associated molecule Ldb1. We employed artificial zinc fingers (ZF) to tether Ldb1 to the ß-globin promoter in GATA1 null erythroblasts, in which the ß-globin locus is relaxed and inactive. Remarkably, targeting Ldb1 or only its self-association domain to the ß-globin promoter substantially activated ß-globin transcription in the absence of GATA1. Promoter-tethered Ldb1 interacted with endogenous Ldb1 complexes at the LCR to form a chromatin loop, causing recruitment and phosphorylation of RNA polymerase II. ZF-Ldb1 proteins were inactive at alleles lacking the LCR, demonstrating that their activities depend on long-range interactions. Our findings establish Ldb1 as a critical effector of GATA1-mediated loop formation and indicate that chromatin looping causally underlies gene regulation.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas com Domínio LIM/metabolismo , Transcrição Gênica , Globinas beta/genética , Animais , Linhagem Celular , Separação Celular , Proteínas de Ligação a DNA/química , Embrião de Mamíferos/citologia , Eritroblastos/metabolismo , Feminino , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Proteínas com Domínio LIM/química , Masculino , Camundongos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Dedos de Zinco
3.
Cell ; 146(2): 318-31, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21757228

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) derived from somatic cells provide a unique tool for the study of human disease, as well as a promising source for cell replacement therapies. One crucial limitation has been the inability to perform experiments under genetically defined conditions. This is particularly relevant for late age onset disorders in which in vitro phenotypes are predicted to be subtle and susceptible to significant effects of genetic background variations. By combining zinc finger nuclease (ZFN)-mediated genome editing and iPSC technology, we provide a generally applicable solution to this problem, generating sets of isogenic disease and control human pluripotent stem cells that differ exclusively at either of two susceptibility variants for Parkinson's disease by modifying the underlying point mutations in the α-synuclein gene. The robust capability to genetically correct disease-causing point mutations in patient-derived hiPSCs represents significant progress for basic biomedical research and an advance toward hiPSC-based cell replacement therapies.


Assuntos
Doença de Parkinson/patologia , Células-Tronco Pluripotentes , Mutação Puntual , Linhagem Celular , Células-Tronco Embrionárias , Engenharia Genética , Estudo de Associação Genômica Ampla , Humanos , Mutagênese , Oligonucleotídeos/metabolismo , alfa-Sinucleína/genética
4.
N Engl J Med ; 386(2): 138-147, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34898140

RESUMO

Gene therapy with LentiGlobin for sickle cell disease (bb1111, lovotibeglogene autotemcel) consists of autologous transplantation of a patient's hematopoietic stem cells transduced with the BB305 lentiviral vector that encodes the ßA-T87Q-globin gene. Acute myeloid leukemia developed in a woman approximately 5.5 years after she had received LentiGlobin for sickle cell disease as part of the initial cohort (Group A) of the HGB-206 study. An analysis of peripheral-blood samples revealed that blast cells contained a BB305 lentiviral vector insertion site. The results of an investigation of causality indicated that the leukemia was unlikely to be related to vector insertion, given the location of the insertion site, the very low transgene expression in blast cells, and the lack of an effect on expression of surrounding genes. Several somatic mutations predisposing to acute myeloid leukemia were present after diagnosis, which suggests that patients with sickle cell disease are at increased risk for hematologic malignant conditions after transplantation, most likely because of a combination of risks associated with underlying sickle cell disease, transplantation procedure, and inadequate disease control after treatment. (Funded by Bluebird Bio.).


Assuntos
Anemia Falciforme/terapia , Expressão Gênica , Terapia Genética/efeitos adversos , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/etiologia , Globinas beta/genética , Adulto , Anemia Falciforme/complicações , Anemia Falciforme/genética , Carcinogênese , Feminino , Vetores Genéticos , Humanos , Lentivirus , Fatores de Risco , Análise de Sequência de RNA , Transgenes , Transplante Autólogo
5.
Cell ; 140(5): 678-91, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20211137

RESUMO

The incorporation of histone H3 variants has been implicated in the epigenetic memory of cellular state. Using genome editing with zinc-finger nucleases to tag endogenous H3.3, we report genome-wide profiles of H3 variants in mammalian embryonic stem cells and neuronal precursor cells. Genome-wide patterns of H3.3 are dependent on amino acid sequence and change with cellular differentiation at developmentally regulated loci. The H3.3 chaperone Hira is required for H3.3 enrichment at active and repressed genes. Strikingly, Hira is not essential for localization of H3.3 at telomeres and many transcription factor binding sites. Immunoaffinity purification and mass spectrometry reveal that the proteins Atrx and Daxx associate with H3.3 in a Hira-independent manner. Atrx is required for Hira-independent localization of H3.3 at telomeres and for the repression of telomeric RNA. Our data demonstrate that multiple and distinct factors are responsible for H3.3 localization at specific genomic locations in mammalian cells.


Assuntos
Histonas/análise , Telômero/química , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Genoma , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Telômero/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
6.
Genes Dev ; 28(17): 1885-99, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25128433

RESUMO

Telomere length homeostasis is essential for the long-term survival of stem cells, and its set point determines the proliferative capacity of differentiated cell lineages by restricting the reservoir of telomeric repeats. Knockdown and overexpression studies in human tumor cells showed that the shelterin subunit TPP1 recruits telomerase to telomeres through a region termed the TEL patch. However, these studies do not resolve whether the TPP1 TEL patch is the only mechanism for telomerase recruitment and whether telomerase regulation studied in tumor cells is representative of nontransformed cells such as stem cells. Using genome engineering of human embryonic stem cells, which have physiological telomere length homeostasis, we establish that the TPP1 TEL patch is genetically essential for telomere elongation and thus long-term cell viability. Furthermore, genetic bypass, protein fusion, and intragenic complementation assays define two distinct additional mechanisms of TPP1 involvement in telomerase action at telomeres. We demonstrate that TPP1 provides an essential step of telomerase activation as well as feedback regulation of telomerase by telomere length, which is necessary to determine the appropriate telomere length set point in human embryonic stem cells. These studies reveal and resolve multiple TPP1 roles in telomere elongation and stem cell telomere length homeostasis.


Assuntos
Telomerase/metabolismo , Homeostase do Telômero/genética , Telômero/enzimologia , Células-Tronco Embrionárias , Ativação Enzimática/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
7.
Phys Rev Lett ; 124(16): 163402, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383932

RESUMO

We show that the lifetime of ultracold ground-state ^{87}Rb^{133}Cs molecules in an optical trap is limited by fast optical excitation of long-lived two-body collision complexes. We partially suppress this loss mechanism by applying square-wave modulation to the trap intensity, such that the molecules spend 75% of each modulation cycle in the dark. By varying the modulation frequency, we show that the lifetime of the collision complex is 0.53±0.06 ms in the dark. We find that the rate of optical excitation of the collision complex is 3_{-2}^{+4}×10^{3} W^{-1} cm^{2} s^{-1} for λ=1550 nm, leading to a lifetime of <100 ns for typical trap intensities. These results explain the two-body loss observed in experiments on nonreactive bialkali molecules.

8.
Phys Chem Chem Phys ; 22(47): 27529-27538, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33079114

RESUMO

We explore coherent multi-photon processes in 87Rb133Cs molecules using 3-level lambda and ladder configurations of rotational and hyperfine states, and discuss their relevance to future applications in quantum computation and quantum simulation. In the lambda configuration, we demonstrate the driving of population between two hyperfine levels of the rotational ground state via a two-photon Raman transition. Such pairs of states may be used in the future as a quantum memory, and we measure a Ramsey coherence time for a superposition of these states of 58(9) ms. In the ladder configuration, we show that we can generate and coherently populate microwave dressed states via the observation of an Autler-Townes doublet. We demonstrate that we can control the strength of this dressing by varying the intensity of the microwave coupling field. Finally, we perform spectroscopy of the rotational states of 87Rb133Cs up to N = 6, highlighting the potential of ultracold molecules for quantum simulation in synthetic dimensions. By fitting the measured transition frequencies we determine a new value of the centrifugal distortion coefficient Dv = h × 207.3(2) Hz.

9.
Nature ; 510(7504): 235-240, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24870228

RESUMO

Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology-directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective complementary DNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked severe combined immunodeficiency (SCID-X1). Gene-edited HSCs sustained normal haematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open up new avenues for treating SCID-X1 and other diseases.


Assuntos
Marcação de Genes/métodos , Genoma Humano/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Reparo Gênico Alvo-Dirigido/métodos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Animais , Antígenos CD34/metabolismo , DNA Complementar/genética , Endonucleases/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Sangue Fetal/transplante , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Subunidade gama Comum de Receptores de Interleucina/genética , Masculino , Camundongos , Mutação/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
10.
Nature ; 500(7462): 296-300, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863942

RESUMO

Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.


Assuntos
Cromossomos Humanos Par 21/genética , Mecanismo Genético de Compensação de Dose , Síndrome de Down/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Metilação de DNA , Síndrome de Down/terapia , Inativação Gênica , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Mutagênese Insercional , Neurogênese , RNA Longo não Codificante/genética , Cromatina Sexual/genética , Inativação do Cromossomo X/genética
11.
Mol Ther ; 26(1): 320-328, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29102562

RESUMO

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E2 (PGE2) as a positive mediator of lentiviral transduction of CD34+ cells. Supplementation with PGE2 increased lentiviral vector (LVV) transduction of CD34+ cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34+ cells from multiple normal human donors and from patients with ß-thalassemia or sickle cell disease. Notably, PGE2 increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE2 improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE2 may be useful in clinical gene therapy applications using lentivirally modified HSPCs.


Assuntos
Dinoprostona/metabolismo , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transdução Genética , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem Celular , Biblioteca Gênica , Técnicas de Transferência de Genes , Terapia Genética , Globinas/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Transgenes , Transplante Heterólogo , Internalização do Vírus , Talassemia beta/genética , Talassemia beta/metabolismo
12.
Nat Methods ; 12(5): 465-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25799440

RESUMO

Transcription activator-like effector (TALE) proteins have gained broad appeal as a platform for targeted DNA recognition, largely owing to their simple rules for design. These rules relate the base specified by a single TALE repeat to the identity of two key residues (the repeat variable diresidue, or RVD) and enable design for new sequence targets via modular shuffling of these units. A key limitation of these rules is that their simplicity precludes options for improving designs that are insufficiently active or specific. Here we address this limitation by developing an expanded set of RVDs and applying them to improve the performance of previously described TALEs. As an extreme example, total conversion of a TALE nuclease to new RVDs substantially reduced off-target cleavage in cellular studies. By providing new RVDs and design strategies, these studies establish options for developing improved TALEs for broader application across medicine and biotechnology.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma , Edição de RNA/fisiologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , DNA/genética , Ensaio de Imunoadsorção Enzimática , Marcadores Genéticos , Fatores de Transcrição/genética
13.
Nat Methods ; 12(10): 927-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26322838

RESUMO

Regulatory regions harbor multiple transcription factor (TF) recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe an approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function.


Assuntos
Proteínas de Transporte/genética , Pegada de DNA/métodos , Genômica/métodos , Proteínas Nucleares/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Sítios de Ligação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Elementos Facilitadores Genéticos , Eritrócitos/fisiologia , Eritropoese , Genoma Humano , Humanos , Mutação , Proteínas Repressoras , Fatores de Transcrição/metabolismo
14.
PLoS Pathog ; 12(11): e1005983, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27855210

RESUMO

HIV-1 entry can be inhibited by soluble peptides from the gp41 heptad repeat-2 (HR2) domain that interfere with formation of the 6-helix bundle during fusion. Inhibition has also been seen when these peptides are conjugated to anchoring molecules and over-expressed on the cell surface. We hypothesized that potent anti-HIV activity could be achieved if a 34 amino acid peptide from HR2 (C34) were brought to the site of virus-cell interactions by conjugation to the amino termini of HIV-1 coreceptors CCR5 or CXCR4. C34-conjugated coreceptors were expressed on the surface of T cell lines and primary CD4 T cells, retained the ability to mediate chemotaxis in response to cognate chemokines, and were highly resistant to HIV-1 utilization for entry. Notably, C34-conjugated CCR5 and CXCR4 each exhibited potent and broad inhibition of HIV-1 isolates from diverse clades irrespective of tropism (i.e., each could inhibit R5, X4 and dual-tropic isolates). This inhibition was highly specific and dependent on positioning of the peptide, as HIV-1 infection was poorly inhibited when C34 was conjugated to the amino terminus of CD4. C34-conjugated coreceptors could also inhibit HIV-1 isolates that were resistant to the soluble HR2 peptide inhibitor, enfuvirtide. When introduced into primary cells, CD4 T cells expressing C34-conjugated coreceptors exhibited physiologic responses to T cell activation while inhibiting diverse HIV-1 isolates, and cells containing C34-conjugated CXCR4 expanded during HIV-1 infection in vitro and in a humanized mouse model. Notably, the C34-conjugated peptide exerted greater HIV-1 inhibition when conjugated to CXCR4 than to CCR5. Thus, antiviral effects of HR2 peptides can be specifically directed to the site of viral entry where they provide potent and broad inhibition of HIV-1. This approach to engineer HIV-1 resistance in functional CD4 T cells may provide a novel cell-based therapeutic for controlling HIV infection in humans.


Assuntos
Linfócitos T CD4-Positivos/virologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Internalização do Vírus , Animais , Linfócitos T CD4-Positivos/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD
15.
Blood ; 127(20): 2416-26, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26980728

RESUMO

Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.


Assuntos
Transplante de Medula Óssea , Linhagem da Célula , Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Macaca nemestrina/genética , Receptores CCR5/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Eletroporação , Estudos de Viabilidade , Técnicas de Silenciamento de Genes , Sobrevivência de Enxerto , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética , Receptores CCR5/deficiência , Análise de Sequência de DNA , Condicionamento Pré-Transplante , Transplante Autólogo , Irradiação Corporal Total , Dedos de Zinco
16.
Nucleic Acids Res ; 44(3): e30, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26527725

RESUMO

The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8(+) T cells and gene targeting of a GFP transgene cassette in >40% of CD8(+) and CD4(+) T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Dependovirus/genética , Endonucleases/genética , Vetores Genéticos , Genoma Humano , RNA Mensageiro/genética , Transfecção , Dedos de Zinco , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD8-Positivos/enzimologia , Humanos
17.
N Engl J Med ; 370(10): 901-10, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24597865

RESUMO

BACKGROUND: CCR5 is the major coreceptor for human immunodeficiency virus (HIV). We investigated whether site-specific modification of the gene ("gene editing")--in this case, the infusion of autologous CD4 T cells in which the CCR5 gene was rendered permanently dysfunctional by a zinc-finger nuclease (ZFN)--is safe. METHODS: We enrolled 12 patients in an open-label, nonrandomized, uncontrolled study of a single dose of ZFN-modified autologous CD4 T cells. The patients had chronic aviremic HIV infection while they were receiving highly active antiretroviral therapy. Six of them underwent an interruption in antiretroviral treatment 4 weeks after the infusion of 10 billion autologous CD4 T cells, 11 to 28% of which were genetically modified with the ZFN. The primary outcome was safety as assessed by treatment-related adverse events. Secondary outcomes included measures of immune reconstitution and HIV resistance. RESULTS: One serious adverse event was associated with infusion of the ZFN-modified autologous CD4 T cells and was attributed to a transfusion reaction. The median CD4 T-cell count was 1517 per cubic millimeter at week 1, a significant increase from the preinfusion count of 448 per cubic millimeter (P<0.001). The median concentration of CCR5-modified CD4 T cells at 1 week was 250 cells per cubic millimeter. This constituted 8.8% of circulating peripheral-blood mononuclear cells and 13.9% of circulating CD4 T cells. Modified cells had an estimated mean half-life of 48 weeks. During treatment interruption and the resultant viremia, the decline in circulating CCR5-modified cells (-1.81 cells per day) was significantly less than the decline in unmodified cells (-7.25 cells per day) (P=0.02). HIV RNA became undetectable in one of four patients who could be evaluated. The blood level of HIV DNA decreased in most patients. CONCLUSIONS: CCR5-modified autologous CD4 T-cell infusions are safe within the limits of this study. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00842634.).


Assuntos
Linfócitos T CD4-Positivos/transplante , Terapia Genética , Infecções por HIV/terapia , Transfusão de Linfócitos , Receptores CCR5/genética , Adulto , Terapia Antirretroviral de Alta Atividade , Transfusão de Sangue Autóloga , Linfócitos T CD4-Positivos/química , Terapia Combinada , DNA Viral/sangue , Feminino , Terapia Genética/efeitos adversos , Terapia Genética/métodos , HIV/genética , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , Reto/imunologia , Carga Viral
18.
Blood ; 126(15): 1777-84, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26297739

RESUMO

Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases.


Assuntos
Albuminas/genética , Terapia de Reposição de Enzimas , Terapia Genética , Genoma , Fígado/metabolismo , Transgenes/fisiologia , Albuminas/metabolismo , Animais , Dependovirus/genética , Endonucleases , Doença de Fabry/genética , Doença de Fabry/terapia , Fator IX/genética , Fator VIII/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Vetores Genéticos/administração & dosagem , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Regiões Promotoras Genéticas/genética , Edição de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dedos de Zinco
19.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25733580

RESUMO

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Assuntos
Anemia Falciforme/genética , Anemia Falciforme/terapia , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Mutação , Globinas beta/genética , Anemia Falciforme/patologia , Animais , Antígenos CD34/análise , Sequência de Bases , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Endodesoxirribonucleases/metabolismo , Sangue Fetal/transplante , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Dedos de Zinco
20.
Nature ; 475(7355): 217-21, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706032

RESUMO

Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.


Assuntos
Reparo do DNA/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma/genética , Hemofilia B/genética , Hemostasia , Animais , Sequência de Bases , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Éxons/genética , Fator IX/análise , Fator IX/genética , Vetores Genéticos/genética , Células HEK293 , Hemofilia B/fisiopatologia , Humanos , Íntrons/genética , Fígado/metabolismo , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Fenótipo , Homologia de Sequência , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA