Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 49(D1): D309-D318, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32976589

RESUMO

Alternative splicing plays a major role in regulating the functional repertoire of the proteome. However, isoform-specific effects to protein-protein interactions (PPIs) are usually overlooked, making it impossible to judge the functional role of individual exons on a systems biology level. We overcome this barrier by integrating protein-protein interactions, domain-domain interactions and residue-level interactions information to lift exon expression analysis to a network level. Our user-friendly database DIGGER is available at https://exbio.wzw.tum.de/digger and allows users to seamlessly switch between isoform and exon-centric views of the interactome and to extract sub-networks of relevant isoforms, making it an essential resource for studying mechanistic consequences of alternative splicing.


Assuntos
Processamento Alternativo , Bases de Dados de Proteínas , Éxons , Mapeamento de Interação de Proteínas/métodos , Proteoma/química , RNA Mensageiro/genética , Sítios de Ligação , Biologia Computacional/métodos , Humanos , Internet , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Software , Termodinâmica
2.
PLoS Comput Biol ; 17(4): e1008329, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826604

RESUMO

Tandem alternative splice sites (TASS) is a special class of alternative splicing events that are characterized by a close tandem arrangement of splice sites. Most TASS lack functional characterization and are believed to arise from splicing noise. Based on the RNA-seq data from the Genotype Tissue Expression project, we present an extended catalogue of TASS in healthy human tissues and analyze their tissue-specific expression. The expression of TASS is usually dominated by one major splice site (maSS), while the expression of minor splice sites (miSS) is at least an order of magnitude lower. Among 46k miSS with sufficient read support, 9k (20%) are significantly expressed above the expected noise level, and among them 2.5k are expressed tissue-specifically. We found significant correlations between tissue-specific expression of RNA-binding proteins (RBP), tissue-specific expression of miSS, and miSS response to RBP inactivation by shRNA. In combination with RBP profiling by eCLIP, this allowed prediction of novel cases of tissue-specific splicing regulation including a miSS in QKI mRNA that is likely regulated by PTBP1. The analysis of human primary cell transcriptomes suggested that both tissue-specific and cell-type-specific factors contribute to the regulation of miSS expression. More than 20% of tissue-specific miSS affect structured protein regions and may adjust protein-protein interactions or modify the stability of the protein core. The significantly expressed miSS evolve under the same selection pressure as maSS, while other miSS lack signatures of evolutionary selection and conservation. Using mixture models, we estimated that not more than 15% of maSS and not more than 54% of tissue-specific miSS are noisy, while the proportion of noisy splice sites among non-significantly expressed miSS is above 63%.


Assuntos
Processamento Alternativo , Transcriptoma , Humanos , RNA Mensageiro/genética
3.
Bioinformatics ; 36(11): 3372-3378, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154837

RESUMO

MOTIVATION: In proteins, solvent accessibility of individual residues is a factor contributing to their importance for protein function and stability. Hence one might wish to calculate solvent accessibility in order to predict the impact of mutations, their pathogenicity and for other biomedical applications. A direct computation of solvent accessibility is only possible if all atoms of a protein three-dimensional structure are reliably resolved. RESULTS: We present SphereCon, a new precise measure that can estimate residue relative solvent accessibility (RSA) from limited data. The measure is based on calculating the volume of intersection of a sphere with a cone cut out in the direction opposite of the residue with surrounding atoms. We propose a method for estimating the position and volume of residue atoms in cases when they are not known from the structure, or when the structural data are unreliable or missing. We show that in cases of reliable input structures, SphereCon correlates almost perfectly with the directly computed RSA, and outperforms other previously suggested indirect methods. Moreover, SphereCon is the only measure that yields accurate results when the identities of amino acids are unknown. A significant novel feature of SphereCon is that it can estimate RSA from inter-residue distance and contact matrices, without any information about the actual atom coordinates. AVAILABILITY AND IMPLEMENTATION: https://github.com/kalininalab/spherecon. CONTACT: alexander.gress@helmholtz-hips.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aminoácidos , Proteínas , Estrutura Secundária de Proteína , Solventes
4.
Nucleic Acids Res ; 44(W1): W463-8, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27150811

RESUMO

The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de.


Assuntos
Internet , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Proteínas/química , Proteínas/genética , Software , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Bactérias/genética , Benchmarking , Doença/genética , Resistência a Medicamentos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Gefitinibe , Humanos , Imageamento Tridimensional , Ligantes , Modelos Moleculares , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia
5.
Bioinformatics ; 32(12): 1888-90, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153685

RESUMO

UNLABELLED: In medical research, it is crucial to understand the functional consequences of genetic alterations, for example, non-synonymous single nucleotide variants (nsSNVs). NsSNVs are known to be causative for several human diseases. However, the genetic basis of complex disorders such as diabetes or cancer comprises multiple factors. Methods to analyze putative synergetic effects of multiple such factors, however, are limited. Here, we concentrate on nsSNVs and present BALL-SNPgp, a tool for structural and functional characterization of nsSNVs, which is aimed to improve pathogenicity assessment in computational diagnostics. Based on annotated SNV data, BALL-SNPgp creates a three-dimensional visualization of the encoded protein, collects available information from different resources concerning disease relevance and other functional annotations, performs cluster analysis, predicts putative binding pockets and provides data on known interaction sites. AVAILABILITY AND IMPLEMENTATION: BALL-SNPgp is based on the comprehensive C ++ framework Biochemical Algorithms Library (BALL) and its visualization front-end BALLView. Our tool is available at www.ccb.uni-saarland.de/BALL-SNPgp CONTACT: ballsnp@milaman.cs.uni-saarland.de.


Assuntos
Biblioteca Gênica , Variação Genética , Técnicas de Diagnóstico Molecular , Polimorfismo de Nucleotídeo Único , Algoritmos , Humanos , Estrutura Terciária de Proteína , Proteínas
6.
Gigascience ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130085

RESUMO

BACKGROUND: Structural annotation of genetic variants in the context of intermolecular interactions and protein stability can shed light onto mechanisms of disease-related phenotypes. Three-dimensional structures of related proteins in complexes with other proteins, nucleic acids, or ligands enrich such functional interpretation, since intermolecular interactions are well conserved in evolution. RESULTS: We present d-StructMAn, a novel computational method that enables structural annotation of local genetic variants, such as single-nucleotide variants and in-frame indels, and implements it in a highly efficient and user-friendly tool provided as a Docker container. Using d-StructMAn, we annotated several very large sets of human genetic variants, including all variants from ClinVar and all amino acid positions in the human proteome. We were able to provide annotation for more than 46% of positions in the human proteome representing over 60% proteins. CONCLUSIONS: d-StructMAn is the first of its kind and a highly efficient tool for structural annotation of protein-coding genetic variation in the context of observed and potential intermolecular interactions. d-StructMAn is readily applicable to proteome-scale datasets and can be an instrumental building machine-learning tool for predicting genotype-to-phenotype relationships.


Assuntos
Ácidos Nucleicos , Proteoma , Aminoácidos , Variação Genética , Humanos , Anotação de Sequência Molecular , Nucleotídeos
7.
Mater Today Bio ; 8: 100084, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33313504

RESUMO

The pipeline of antibiotics has been for decades on an alarmingly low level. Considering the steadily emerging antibiotic resistance, novel tools are needed for early and easy identification of effective anti-infective compounds. In Gram-negative bacteria, the uptake of anti-infectives is especially limited. We here present a surprisingly simple in vitro model of the Gram-negative bacterial envelope, based on 20% (w/v) potato starch gel, printed on polycarbonate 96-well filter membranes. Rapid permeability measurements across this polysaccharide hydrogel allowed to correctly predict either high or low accumulation for all 16 tested anti-infectives in living Escherichia coli. Freeze-fracture TEM supports that the macromolecular network structure of the starch hydrogel may represent a useful surrogate of the Gram-negative bacterial envelope. A random forest analysis of in vitro data revealed molecular mass, minimum projection area, and rigidity as the most critical physicochemical parameters for hydrogel permeability, in agreement with reported structural features needed for uptake into Gram-negative bacteria. Correlating our dataset of 27 antibiotics from different structural classes to reported MIC values of nine clinically relevant pathogens allowed to distinguish active from nonactive compounds based on their low in vitro permeability specifically for Gram-negatives. The model may help to identify poorly permeable antimicrobial candidates before testing them on living bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA