Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2217144120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669363

RESUMO

Multiple ecological forces act together to shape the composition of microbial communities. Phyloecology approaches-which combine phylogenetic relationships between species with community ecology-have the potential to disentangle such forces but are often hard to connect with quantitative predictions from theoretical models. On the other hand, macroecology, which focuses on statistical patterns of abundance and diversity, provides natural connections with theoretical models but often neglects interspecific correlations and interactions. Here, we propose a unified framework combining both such approaches to analyze microbial communities. In particular, by using both cross-sectional and longitudinal metagenomic data for species abundances, we reveal the existence of an empirical macroecological law establishing that correlations in species-abundance fluctuations across communities decay from positive to null values as a function of phylogenetic dissimilarity in a consistent manner across ecologically distinct microbiomes. We formulate three variants of a mechanistic model-each relying on alternative ecological forces-that lead to radically different predictions. From these analyses, we conclude that the empirically observed macroecological pattern can be quantitatively explained as a result of shared population-independent fluctuating resources, i.e., environmental filtering and not as a consequence of, e.g., species competition. Finally, we show that the macroecological law is also valid for temporal data of a single community and that the properties of delayed temporal correlations can be reproduced as well by the model with environmental filtering.


Assuntos
Metagenoma , Microbiota , Filogenia , Estudos Transversais , Metagenômica
2.
Proc Natl Acad Sci U S A ; 119(30): e2117748119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862452

RESUMO

In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.


Assuntos
Bactérias , Bacteriófagos , Microbiota , Água do Mar , Organismos Aquáticos , Bactérias/classificação , Quitina/metabolismo , Água do Mar/microbiologia , Água do Mar/virologia
3.
PLoS Comput Biol ; 19(10): e1011532, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792894

RESUMO

The horizontal transfer of genes is fundamental for the eco-evolutionary dynamics of microbial communities, such as oceanic plankton, soil, and the human microbiome. In the case of an acquired beneficial gene, classic population genetics would predict a genome-wide selective sweep, whereby the genome spreads clonally within the community and together with the beneficial gene, removing genome diversity. Instead, several sources of metagenomic data show the existence of "gene-specific sweeps", whereby a beneficial gene spreads across a bacterial community, maintaining genome diversity. Several hypotheses have been proposed to explain this process, including the decreasing gene flow between ecologically distant populations, frequency-dependent selection from linked deleterious allelles, and very high rates of horizontal gene transfer. Here, we propose an additional possible scenario grounded in eco-evolutionary principles. Specifically, we show by a mathematical model and simulations that a metacommunity where species can occupy multiple patches, acting together with a realistic (moderate) HGT rate, helps maintain genome diversity. Assuming a scenario of patches dominated by single species, our model predicts that diversity only decreases moderately upon the arrival of a new beneficial gene, and that losses in diversity can be quickly restored. We explore the generic behaviour of diversity as a function of three key parameters, frequency of insertion of new beneficial genes, migration rates and horizontal transfer rates.Our results provides a testable explanation for how diversity can be maintained by gene-specific sweeps even in the absence of high horizontal gene transfer rates.


Assuntos
Bactérias , Transferência Genética Horizontal , Humanos , Transferência Genética Horizontal/genética , Bactérias/genética , Evolução Biológica , Genoma
4.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931503

RESUMO

Despite a boost of recent progress in dynamic single-cell measurements and analyses in Escherichia coli, we still lack a mechanistic understanding of the determinants of the decision to divide. Specifically, the debate is open regarding the processes linking growth and chromosome replication to division and on the molecular origin of the observed "adder correlations," whereby cells divide, adding roughly a constant volume independent of their initial volume. In order to gain insight into these questions, we interrogate dynamic size-growth behavior of single cells across nutrient upshifts with a high-precision microfluidic device. We find that the division rate changes quickly after nutrients change, much before growth rate goes to a steady state, and in a way that adder correlations are robustly conserved. Comparison of these data to simple mathematical models falsifies proposed mechanisms, where replication-segregation or septum completions are the limiting step for cell division. Instead, we show that the accumulation of a putative constitutively expressed "P-sector divisor" protein explains the behavior during the shift.


Assuntos
Divisão Celular/genética , Proliferação de Células/genética , Cromossomos Bacterianos/genética , Modelos Teóricos , Ciclo Celular/genética , Replicação do DNA/genética , Escherichia coli/genética , Nutrientes/metabolismo , Análise de Célula Única
5.
Phys Rev Lett ; 130(6): 067401, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827575

RESUMO

Real-world datasets characterized by discrete features are ubiquitous: from categorical surveys to clinical questionnaires, from unweighted networks to DNA sequences. Nevertheless, the most common unsupervised dimensional reduction methods are designed for continuous spaces, and their use for discrete spaces can lead to errors and biases. In this Letter we introduce an algorithm to infer the intrinsic dimension (ID) of datasets embedded in discrete spaces. We demonstrate its accuracy on benchmark datasets, and we apply it to analyze a metagenomic dataset for species fingerprinting, finding a surprisingly small ID, of order 2. This suggests that evolutive pressure acts on a low-dimensional manifold despite the high dimensionality of sequences' space.

6.
PLoS Comput Biol ; 18(4): e1010043, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363772

RESUMO

The large taxonomic variability of microbial community composition is a consequence of the combination of environmental variability, mediated through ecological interactions, and stochasticity. Most of the analysis aiming to infer the biological factors determining this difference in community structure start by quantifying how much communities are similar in their composition, trough beta-diversity metrics. The central role that these metrics play in microbial ecology does not parallel with a quantitative understanding of their relationships and statistical properties. In particular, we lack a framework that reproduces the empirical statistical properties of beta-diversity metrics. Here we take a macroecological approach and introduce a model to reproduce the statistical properties of community similarity. The model is based on the statistical properties of individual communities and on a single tunable parameter, the correlation of species' carrying capacities across communities, which sets the difference of two communities. The model reproduces quantitatively the empirical values of several commonly-used beta-diversity metrics, as well as the relationships between them. In particular, this modeling framework naturally reproduces the negative correlation between overlap and dissimilarity, which has been observed in both empirical and experimental communities and previously related to the existence of universal features of community dynamics. In this framework, such correlation naturally emerges due to the effect of random sampling.


Assuntos
Conservação dos Recursos Naturais , Microbiota , Benchmarking , Biodiversidade , Modelos Logísticos
7.
PLoS Comput Biol ; 18(5): e1010059, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500024

RESUMO

Growing cells adopt common basic strategies to achieve optimal resource allocation under limited resource availability. Our current understanding of such "growth laws" neglects degradation, assuming that it occurs slowly compared to the cell cycle duration. Here we argue that this assumption cannot hold at slow growth, leading to important consequences. We propose a simple framework showing that at slow growth protein degradation is balanced by a fraction of "maintenance" ribosomes. Consequently, active ribosomes do not drop to zero at vanishing growth, but as growth rate diminishes, an increasing fraction of active ribosomes performs maintenance. Through a detailed analysis of compiled data, we show that the predictions of this model agree with data from E. coli and S. cerevisiae. Intriguingly, we also find that protein degradation increases at slow growth, which we interpret as a consequence of active waste management and/or recycling. Our results highlight protein turnover as an underrated factor for our understanding of growth laws across kingdoms.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Biossíntese de Proteínas , Proteólise , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Nature ; 548(7666): 210-213, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28746307

RESUMO

Ecologists have long sought a way to explain how the remarkable biodiversity observed in nature is maintained. On the one hand, simple models of interacting competitors cannot produce the stable persistence of very large ecological communities. On the other hand, neutral models, in which species do not interact and diversity is maintained by immigration and speciation, yield unrealistically small fluctuations in population abundance, and a strong positive correlation between a species' abundance and its age, contrary to empirical evidence. Models allowing for the robust persistence of large communities of interacting competitors are lacking. Here we show that very diverse communities could persist thanks to the stabilizing role of higher-order interactions, in which the presence of a species influences the interaction between other species. Although higher-order interactions have been studied for decades, their role in shaping ecological communities is still unclear. The inclusion of higher-order interactions in competitive network models stabilizes dynamics, making species coexistence robust to the perturbation of both population abundance and parameter values. We show that higher-order interactions have strong effects in models of closed ecological communities, as well as of open communities in which new species are constantly introduced. In our framework, higher-order interactions are completely defined by pairwise interactions, facilitating empirical parameterization and validation of our models.


Assuntos
Biota , Comportamento Competitivo , Modelos Biológicos , Animais , Plantas , Dinâmica Populacional , Reprodutibilidade dos Testes , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 120(17): e2304170120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068257
10.
Proc Natl Acad Sci U S A ; 114(29): 7600-7605, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673985

RESUMO

In biology, last names have been used as proxy for genetic relatedness in pioneering studies of neutral theory and human migrations. More recently, analyzing the last name distribution of Italian academics has raised the suspicion of nepotism, with faculty hiring their relatives for academic posts. Here, we analyze three large datasets containing the last names of all academics in Italy, researchers from France, and those working at top public institutions in the United States. Through simple randomizations, we show that the US academic system is geographically well-mixed, whereas Italian academics tend to work in their native region. By contrasting maiden and married names, we can detect academic couples in France. Finally, we detect the signature of nepotism in the Italian system, with a declining trend. The claim that our tests detect nepotism as opposed to other effects is supported by the fact that we obtain different results for the researchers hired after 2010, when an antinepotism law was in effect.


Assuntos
Academias e Institutos/ética , Nomes , Seleção de Pessoal/ética , Universidades/ética , Coleta de Dados , Emigração e Imigração , Família , Feminino , França , Geografia , Humanos , Itália , Masculino , Modelos Estatísticos , Fatores Sexuais , Estados Unidos
11.
BMC Biol ; 17(1): 102, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822273

RESUMO

BACKGROUND: The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. RESULTS: Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. CONCLUSION: Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.


Assuntos
Caenorhabditis elegans/fisiologia , Temperatura Alta , Termotolerância , Transcriptoma/fisiologia , Animais , Caenorhabditis elegans/genética
12.
Nucleic Acids Res ; 45(13): 7615-7622, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28605556

RESUMO

Among several quantitative invariants found in evolutionary genomics, one of the most striking is the scaling of the overall abundance of proteins, or protein domains, sharing a specific functional annotation across genomes of given size. The size of these functional categories change, on average, as power-laws in the total number of protein-coding genes. Here, we show that such regularities are not restricted to the overall behavior of high-level functional categories, but also exist systematically at the level of single evolutionary families of protein domains. Specifically, the number of proteins within each family follows family-specific scaling laws with genome size. Functionally similar sets of families tend to follow similar scaling laws, but this is not always the case. To understand this systematically, we provide a comprehensive classification of families based on their scaling properties. Additionally, we develop a quantitative score for the heterogeneity of the scaling of families belonging to a given category or predefined group. Under the common reasonable assumption that selection is driven solely or mainly by biological function, these findings point to fine-tuned and interdependent functional roles of specific protein domains, beyond our current functional annotations. This analysis provides a deeper view on the links between evolutionary expansion of protein families and the functional constraints shaping the gene repertoire of bacterial genomes.


Assuntos
Evolução Molecular , Genoma Bacteriano , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Tamanho do Genoma , Domínios Proteicos/genética , Proteoma/química , Proteoma/classificação , Proteoma/genética , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
13.
Proc Biol Sci ; 285(1887)2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232162

RESUMO

Animal social groups are complex systems that are likely to exhibit tipping points-which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions-yet this concept has not been carefully applied to these systems. Here, we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioural ecology and generate novel questions, methods, and approaches in animal behaviour and other fields, including community and ecosystem ecology. While some behaviours of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization-populations, communities, ecosystems-may help to reveal principles that transcend traditional disciplinary boundaries.


Assuntos
Comportamento Animal , Comportamento Social , Animais , Ecossistema
14.
Proc Natl Acad Sci U S A ; 111(28): 10095-100, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982145

RESUMO

Empirical evidence suggesting that living systems might operate in the vicinity of critical points, at the borderline between order and disorder, has proliferated in recent years, with examples ranging from spontaneous brain activity to flock dynamics. However, a well-founded theory for understanding how and why interacting living systems could dynamically tune themselves to be poised in the vicinity of a critical point is lacking. Here we use tools from statistical mechanics and information theory to show that complex adaptive or evolutionary systems can be much more efficient in coping with diverse heterogeneous environmental conditions when operating at criticality. Analytical as well as computational evolutionary and adaptive models vividly illustrate that a community of such systems dynamically self-tunes close to a critical state as the complexity of the environment increases while they remain noncritical for simple and predictable environments. A more robust convergence to criticality emerges in coevolutionary and coadaptive setups in which individuals aim to represent other agents in the community with fidelity, thereby creating a collective critical ensemble and providing the best possible tradeoff between accuracy and flexibility. Our approach provides a parsimonious and general mechanism for the emergence of critical-like behavior in living systems needing to cope with complex environments or trying to efficiently coordinate themselves as an ensemble.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Animais , Humanos
15.
PLoS Comput Biol ; 11(5): e1004251, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25993004

RESUMO

Habitat destruction and land use change are making the world in which natural populations live increasingly fragmented, often leading to local extinctions. Although local populations might undergo extinction, a metapopulation may still be viable as long as patches of suitable habitat are connected by dispersal, so that empty patches can be recolonized. Thus far, metapopulations models have either taken a mean-field approach, or have modeled empirically-based, realistic landscapes. Here we show that an intermediate level of complexity between these two extremes is to consider random landscapes, in which the patches of suitable habitat are randomly arranged in an area (or volume). Using methods borrowed from the mathematics of Random Geometric Graphs and Euclidean Random Matrices, we derive a simple, analytic criterion for the persistence of the metapopulation in random fragmented landscapes. Our results show how the density of patches, the variability in their value, the shape of the dispersal kernel, and the dimensionality of the landscape all contribute to determining the fate of the metapopulation. Using this framework, we derive sufficient conditions for the population to be spatially localized, such that spatially confined clusters of patches act as a source of dispersal for the whole landscape. Finally, we show that a regular arrangement of the patches is always detrimental for persistence, compared to the random arrangement of the patches. Given the strong parallel between metapopulation models and contact processes, our results are also applicable to models of disease spread on spatial networks.


Assuntos
Ecossistema , Modelos Biológicos , Dinâmica Populacional , Animais , Biologia Computacional , Extinção Biológica , Humanos , Cadeias de Markov , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos
16.
Nucleic Acids Res ; 42(11): 6850-60, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24829449

RESUMO

Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome 'flux'. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.


Assuntos
Transferência Genética Horizontal , Família Multigênica , Evolução Molecular , Duplicação Gênica , Modelos Genéticos
17.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251984

RESUMO

The structure and diversity of microbial communities are intrinsically hierarchical due to the shared evolutionary history of their constituents. This history is typically captured through taxonomic assignment and phylogenetic reconstruction, sources of information that are frequently used to group microbes into higher levels of organization in experimental and natural communities. Connecting community diversity to the joint ecological dynamics of the abundances of these groups is a central problem of community ecology. However, how microbial diversity depends on the scale of observation at which groups are defined has never been systematically examined. Here, we used a macroecological approach to quantitatively characterize the structure and diversity of microbial communities among disparate environments across taxonomic and phylogenetic scales. We found that measures of biodiversity at a given scale can be consistently predicted using a minimal model of ecology, the Stochastic Logistic Model of growth (SLM). This result suggests that the SLM is a more appropriate null-model for microbial biodiversity than alternatives such as the Unified Neutral Theory of Biodiversity. Extending these within-scale results, we examined the relationship between measures of biodiversity calculated at different scales (e.g. genus vs. family), an empirical pattern previously evaluated in the context of the Diversity Begets Diversity (DBD) hypothesis (Madi et al., 2020). We found that the relationship between richness estimates at different scales can be quantitatively predicted assuming independence among community members, demonstrating that the DBD can be sufficiently explained using the SLM as a null model of ecology. Contrastingly, only by including correlations between the abundances of community members (e.g. as the consequence of interactions) can we predict the relationship between estimates of diversity at different scales. The results of this study characterize novel microbial patterns across scales of organization and establish a sharp demarcation between recently proposed macroecological patterns that are not and are affected by ecological interactions.


Assuntos
Evolução Biológica , Microbiota , Modelos Logísticos , Filogenia , Biodiversidade
18.
Phys Rev E ; 108(3-1): 034406, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849158

RESUMO

The assumption of constant population size is central in population genetics. It led to a large body of results that is robust to modeling choices and that has proven successful to understand evolutionary dynamics. In reality, allele frequencies and population size are both determined by the interaction between a population and the environment. Relaxing the constant-population assumption has two big drawbacks. It increases the technical difficulty of the analysis, and it requires specifying a mechanism for the saturation of the population size, possibly making the results contingent on model details. Here we develop a framework that encompasses a great variety of systems with an arbitrary mechanism for population growth limitation. By using techniques based on scale separation for stochastic processes, we are able to calculate analytically properties of evolutionary trajectories, such as the fixation probability. Remarkably, these properties assume a universal form with respect to our framework, which depends on only three parameters related to the intergeneration timescale, the invasion fitness, and the carrying capacity of the strains. In other words, different systems, such as Lotka-Volterra or a chemostat model (contained in our framework), share the same evolutionary outcomes after a proper remapping of their parameters. An important and surprising consequence of our results is that the direction of selection can be inverted, with a population evolving to reach lower values of invasion fitness.


Assuntos
Evolução Biológica , Genética Populacional , Densidade Demográfica , Processos Estocásticos , Probabilidade , Dinâmica Populacional
19.
Phys Rev E ; 108(1): L012401, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583239

RESUMO

Understanding the evolutionary stability of cooperation is a central problem in biology, sociology, and economics. There exist only a few known mechanisms that guarantee the existence of cooperation and its robustness to cheating. Here, we introduce a mechanism for the emergence of cooperation in the presence of fluctuations. We consider agents whose wealth changes stochastically in a multiplicative fashion. Each agent can share part of her wealth as a public good, which is equally distributed among all the agents. We show that, when agents operate with long-time horizons, cooperation produces an advantage at the individual level, as it effectively screens agents from the deleterious effect of environmental fluctuations.

20.
J Theor Biol ; 313: 87-97, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22902426

RESUMO

There has been a considerable effort to understand and quantify the spatial distribution of species across different ecosystems. Relative species abundance (RSA), beta diversity and species-area relationship (SAR) are among the most used macroecological measures to characterize plants communities in forests. In this paper we introduce a simple phenomenological model based on Poisson cluster processes which allows us to exactly link RSA and beta diversity to SAR. The framework is spatially explicit and accounts for the spatial aggregation of conspecific individuals. Under the simplifying assumption of neutral theory, we derive an analytical expression for the SAR which reproduces tri-phasic behavior as sample area increases from local to continental scales, explaining how the tri-phasic behavior can be understood in terms of simple geometric arguments. We also find an expression for the endemic area relationship (EAR) and for the scaling of the RSA.


Assuntos
Ecossistema , Modelos Biológicos , Distribuição de Poisson , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA