Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Soc Nephrol ; 32(9): 2195-2209, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34230103

RESUMO

BACKGROUND: Urinary extracellular vesicles (uEVs) are secreted into urine by cells from the kidneys and urinary tract. Although changes in uEV proteins are used for quantitative assessment of protein levels in the kidney or biomarker discovery, whether they faithfully reflect (patho)physiologic changes in the kidney is a matter of debate. METHODS: Mass spectrometry was used to compare in an unbiased manner the correlations between protein levels in uEVs and kidney tissue from the same animal. Studies were performed on rats fed a normal or high K+ diet. RESULTS: Absolute quantification determined a positive correlation (Pearson R=0.46 or 0.45, control or high K+ respectively, P<0.0001) between the approximately 1000 proteins identified in uEVs and corresponding kidney tissue. Transmembrane proteins had greater positive correlations relative to cytoplasmic proteins. Proteins with high correlations (R>0.9), included exosome markers Tsg101 and Alix. Relative quantification highlighted a monotonic relationship between altered transporter/channel abundances in uEVs and the kidney after dietary K+ manipulation. Analysis of genetic mouse models also revealed correlations between uEVs and kidney. CONCLUSION: This large-scale unbiased analysis identifies uEV proteins that track the abundance of the parent proteins in the kidney. The data form a novel resource for the kidney community and support the reliability of using uEV protein changes to monitor specific physiologic responses and disease mechanisms.


Assuntos
Vesículas Extracelulares/metabolismo , Rim/metabolismo , Proteoma , Urina/citologia , Animais , Masculino , Espectrometria de Massas , Camundongos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes
2.
Curr Opin Nephrol Hypertens ; 26(5): 426-433, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28771454

RESUMO

PURPOSE OF REVIEW: This review describes the recent discoveries about a powerful electroneutral NaCl reabsorption mechanism in intercalated cells, and its regulation by an intrarenal metabolite paracrine, α-ketoglutartate, and the G-protein coupled receptor, Oxgr1. RECENT FINDINGS: The distal nephron fine-tunes sodium, chloride, potassium, hydrogen, bicarbonate and water transport to maintain electrolyte homeostasis and blood pressure. Intercalated cells have been traditionally viewed as the professional regulators of acid-base balance, but recent studies reveal that a specific population of intercalated cells, identified by the pendrin-transporter, have a surprising role in the regulation of salt balance. The pendrin-positive intercalated cells (PP-ICs) facilitate electroneutral NaCl reabsorption through the cooperative activation of multitransport protein network. α-Ketoglutartate is synthesized and secreted into the proximal tubule lumen in the combined state of metabolic alkalosis and intravascular volume contraction to activate Oxgr1 in PP-IC, which in turn activates the multitransport protein network to drive salt reabsorption and bicarbonate secretion by these cells. SUMMARY: Recent studies identify a novel salt transport pathway in intercalated cells that is activated by an intrarenal paracrine system, α-ketoglutartate/Oxgr1. Activation of the paracrine system and transport pathway, particularly during alkalosis and volume contraction, mitigates deleterious salt wasting while restoring acid-base balance.


Assuntos
Ácidos Cetoglutáricos/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Cloreto de Sódio/metabolismo , Equilíbrio Ácido-Base , Animais , Humanos , Néfrons/metabolismo , Receptores Purinérgicos P2
3.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719746

RESUMO

Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.


Assuntos
Potássio na Dieta , Simportadores de Cloreto de Sódio , Camundongos , Animais , Pressão Sanguínea , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Tiazidas , Suplementos Nutricionais
4.
Front Physiol ; 12: 787323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069250

RESUMO

Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.

5.
Physiol Rep ; 8(4): e14379, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109341

RESUMO

STK39 encodes a serine threonine kinase, SPAK, which is part of a multi-kinase network that determines renal Na+ reabsorption and blood pressure (BP) through regulation of sodium-chloride co-transporters in the kidney. Variants within STK39 are associated with susceptibility to essential hypertension, and constitutively active SPAK mice are hypertensive and hyperkalemic, similar to familial hyperkalemic hyperkalemia in humans. SPAK null mice are hypotensive and mimic Gitelman syndrome, a rare monogenic salt wasting human disorder. Mice exhibit nephron segment-specific expression of full length SPAK and N-terminally truncated SPAK isoforms (SPAK2 and KS-SPAK) with impaired kinase function. SPAK2 and KS-SPAK function to inhibit phosphorylation of cation co-transporters by full length SPAK. However, the existence of orthologous SPAK2 or KS-SPAK within the human kidney, and the role of such SPAK isoforms in nephron segment-specific regulation of Na+ reabsorption, still have not been determined. In this study, we examined both human and mouse kidney transcriptomes to uncover novel transcriptional regulation of STK39. We established that humans also express STK39 transcript isoforms similar to those found in mice but differ in abundance and are transcribed from human-specific promoters. In summary, STK39 undergoes species-specific transcriptional regulation, resulting in differentially expressed alternative transcripts that have implications for the design and testing of novel SPAK-targeting antihypertensive medications.


Assuntos
Hipertensão/genética , Rim/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Pressão Sanguínea , Feminino , Células HEK293 , Células HeLa , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo
6.
Physiol Rep ; 6(14): e13728, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30030908

RESUMO

Active reabsorption of magnesium (Mg2+ ) in the distal convoluted tubule (DCT) of the kidney is crucial for maintaining Mg2+ homeostasis. Impaired activity of the Na+ -Cl- -cotransporter (NCC) has been associated with hypermagnesiuria and hypomagnesemia, while increased activity of NCC, as observed in patients with Gordon syndrome, is not associated with alterations in Mg2+ balance. To further elucidate the possible interrelationship between NCC activity and renal Mg2+ handling, plasma Mg2+ levels and urinary excretion of sodium (Na+ ) and Mg2+ were measured in a mouse model of Gordon syndrome. In this model, DCT1-specific expression of a constitutively active mutant form of the NCC-phosphorylating kinase, SPAK (CA-SPAK), increases NCC activity and hydrochlorothiazide (HCTZ)-sensitive Na+ reabsorption. These mice were normomagnesemic and HCTZ administration comparably reduced plasma Mg2+ levels in CA-SPAK mice and control littermates. As inferred by the initial response to HCTZ, CA-SPAK mice exhibited greater NCC-dependent Na+ reabsorption together with decreased Mg2+ reabsorption, compared to controls. Following prolonged HCTZ administration (4 days), CA-SPAK mice exhibited higher urinary Mg2+ excretion, while urinary Na+ excretion decreased to levels observed in control animals. Surprisingly, CA-SPAK mice had unaltered renal expression of Trpm6, encoding the Mg2+ -permeable channel TRPM6, or other magnesiotropic genes. In conclusion, CA-SPAK mice exhibit normomagnesemia, despite increased NCC activity and Na+ reabsorption. Thus, Mg2+ reabsorption is not coupled to increased thiazide-sensitive Na+ reabsorption, suggesting a similar process explains normomagnesemia in Gordon syndrome. Further research is required to unravel the molecular underpinnings of this phenomenon and the more pronounced Mg2+ excretion after prolonged HCTZ administration.


Assuntos
Artrogripose/metabolismo , Fissura Palatina/metabolismo , Pé Torto Equinovaro/metabolismo , Deformidades Congênitas da Mão/metabolismo , Magnésio/metabolismo , Reabsorção Renal , Sódio/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Feminino , Hidroclorotiazida/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Simportadores de Cloreto de Sódio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA