Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Chem ; 66(1): 149-160, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628139

RESUMO

BACKGROUND: In cancer patients, circulating cell-free DNA (ccfDNA) can contain tumor-derived DNA (ctDNA), which enables noninvasive diagnosis, real-time monitoring, and treatment susceptibility testing. However, ctDNA fractions are highly variable, which challenges downstream applications. Therefore, established preanalytical work flows in combination with cost-efficient and reproducible reference materials for ccfDNA analyses are crucial for analytical validity and subsequently for clinical decision-making. METHODS: We describe the efforts of the Innovative Medicines Initiative consortium CANCER-ID (http://www.cancer-id.eu) for comparing different technologies for ccfDNA purification, quantification, and characterization in a multicenter setting. To this end, in-house generated mononucleosomal DNA (mnDNA) from lung cancer cell lines carrying known TP53 mutations was spiked in pools of plasma from healthy donors generated from 2 different blood collection tubes (BCTs). ccfDNA extraction was performed at 15 partner sites according to their respective routine practice. Downstream analysis of ccfDNA with respect to recovery, integrity, and mutation analysis was performed centralized at 4 different sites. RESULTS: We demonstrate suitability of mnDNA as a surrogate for ccfDNA as a process quality control from nucleic acid extraction to mutation detection. Although automated extraction protocols and quantitative PCR-based quantification methods yielded the most consistent and precise results, some kits preferentially recovered spiked mnDNA over endogenous ccfDNA. Mutated TP53 fragments derived from mnDNA were consistently detected using both next-generation sequencing-based deep sequencing and droplet digital PCR independently of BCT. CONCLUSIONS: This comprehensive multicenter comparison of ccfDNA preanalytical and analytical work flows is an important contribution to establishing evidence-based guidelines for clinically feasible (pre)analytical work flows.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Coleta de Amostras Sanguíneas , Linhagem Celular Tumoral , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/normas , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias/genética , Neoplasias/patologia , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único , Fase Pré-Analítica , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Proteína Supressora de Tumor p53/genética
2.
Int J Exp Pathol ; 97(2): 202-6, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27273709

RESUMO

Molecular diagnostics in personalized medicine increasingly relies on the combination of a variety of analytical technologies to characterize individual diseases and to select patients for targeted therapies. The gold standard for tissue-based diagnostics is fixation in formalin and embedding in paraffin, which results in excellent preservation of morphology but negatively impacts on a variety of molecular assays. The formalin-free, non-cross-linking PAXgene tissue system preserves morphology in a similar way to formalin, but also preserves biomolecules essentially in a similar way to cryopreservation, which markedly widens the spectrum, sensitivity and accuracy of molecular analytics. In this study, we have developed and tested a protocol for PAXgene-fixed and paraffin-embedded tissues for fluorescent in situ hybridization (FISH). The implementation of a 24-h formalin postfixation step of slides from PAXgene-fixed and paraffin-embedded tissues allowed us to use the assays approved for formalin-fixed and paraffin-embedded tissues. The equivalence of the methodologies was demonstrated by FISH analysis of HER2 amplification in breast cancer cases. The 24-h postfixation step of the slides used for FISH can be well integrated in the routine diagnostic workflow and allows the remaining PAXgene-fixed and paraffin-embedded tissue to be used for further molecular testing.


Assuntos
Neoplasias da Mama/genética , Receptor ErbB-2/genética , Fixação de Tecidos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/química , Protocolos Clínicos , Feminino , Fixadores , Formaldeído , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente/métodos , Pessoa de Meia-Idade , Inclusão em Parafina/métodos , Receptor ErbB-2/análise
3.
J Proteome Res ; 12(10): 4424-34, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23984901

RESUMO

Protein phosphorylation controls the activity of signal transduction pathways regulated by kinases and phosphatases. Little is known, however, about the impact of preanalytical factors, for example, delayed times to tissue fixation, on global phosphoprotein levels in tissues. The aim of this study was to characterize the potential effects of delayed tissue preservation (cold ischemia) on the levels of phosphoproteins using targeted and nontargeted proteomic approaches. Rat and murine liver samples were exposed to different cold ischemic conditions ranging from 10 to 360 min prior to cryopreservation. The phosphoproteome was analyzed using reverse phase protein array (RPPA) technology and phosphoprotein-enriched quantitative tandem mass spectrometry (LC-MS/MS). RPPA analysis of rat liver tissues with long (up to 360 min) cold ischemia times did not reveal statistically significant alterations of specific phosphoproteins even though nonphosphorylated cytokeratin 18 (CK18) showed increased levels after 360 min of delay to freezing. Keeping the samples on ice prior to cryopreservation prevented this effect. LC-MS/MS-based quantification of 1684 phosphorylation sites in rat liver tissues showed broadening of their distribution compared to time point zero, but without reaching statistical significance for individual phosphosites. Similarly, RPPA analysis of mouse liver tissues with short (<60 min) cold ischemia times did not reveal directed or predictable changes of protein and phosphoprotein levels. Using LC-MS/MS and quantification of 791 phosphorylation sites, we found that the distribution of ratios compared to time point zero broadens with prolonged ischemia times, but these were rather undirected and diffuse changes, as we could not detect significant alterations of individual phosphosites. On the basis of our results from RPPA and LC-MS/MS analysis of rat and mouse liver tissues, we conclude that prolonged cold ischemia results in unspecific phosphoproteome changes that can be neither predicted nor assigned to individual proteins. On the other hand, we identified a number of phosphosites which were extraordinarily stable even after 360 min of cold ischemia and, therefore, may be used as general reference markers for future companion diagnostics for kinase inhibitors.


Assuntos
Criopreservação , Fígado , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Fixação de Tecidos , Sequência de Aminoácidos , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Cromatografia de Fase Reversa , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosfoproteínas/química , Fosforilação , Proteínas Quinases/metabolismo , Proteoma/química , Ratos , Ratos Wistar , Padrões de Referência , Espectrometria de Massas em Tandem/normas , Fatores de Tempo
4.
Exp Mol Pathol ; 94(1): 188-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22814231

RESUMO

Preanalytical handling of tissue samples can influence bioanalyte quality and ultimately outcome of analytical results. The aim of this study was to compare RNA quality, performance in real time RT PCR and histology of formalin-fixed tissue to that of tissue fixed and stabilized with a formalin-free fixative, the PAXgene Tissue System (PAXgene), in an animal model under highly controlled preanalytical conditions. Samples of rat liver, kidney, spleen, intestine, lung, heart muscle, brain, and stomach tissue were either fixed in formalin or fixed in PAXgene or fresh frozen in liquid nitrogen. RNA was extracted from all samples, examined for integrity in microcapillary electrophoresis, and used in a series of quantitative RT PCR assays with increasing amplicon length. Histology of paraffin-embedded samples was determined by staining with hematoxylin and eosin. Histology of all formalin-fixed and PAXgene fixed samples was comparable. RNA with acceptable integrity scores could be isolated from all embedded tissues, 4.0 to 7.2 for formalin and 6.4 to 7.7 for PAXgene, as compared to 8.0 to 9.2 for fresh frozen samples. While RNA with acceptable RINs (RNA integrity number) could be isolated from formalin-fixed samples, in microcapillary electrophoresis this RNA separated with a slower migration rate and displayed diffuse, less focused peaks for ribosomal RNA as compared to RNA from frozen or PAXgene fixed samples. Furthermore, RNA from formalin-fixed tissues exhibited inhibition in quantitative RT PCR assays which increased with increasing amplicon length, while RNA from PAXgene fixed samples did not show such inhibition. In conclusion, our results demonstrate that excluding other preanalytical factors, PAXgene Tissue System preserves histology similarly to formalin, but unlike formalin, does not chemically modify RNA. RNA purified from PAXgene fixed tissues is of high integrity and performs as well as RNA from fresh frozen tissue in RT PCR regardless of amplicon length.


Assuntos
Fixadores , RNA/análise , Fixação de Tecidos/métodos , Animais , Criopreservação , Formaldeído , Inclusão em Parafina , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Manejo de Espécimes , Coloração e Rotulagem
5.
J Pathol Clin Res ; 6(1): 40-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31571426

RESUMO

Whilst adequate for most existing pathological tests, formalin is generally considered a poor DNA preservative and use of alternative fixatives may prove advantageous for molecular testing of tumour material; an increasingly common approach to identify targetable driver mutations in lung cancer patients. We collected paired PAXgene® tissue-fixed and formalin-fixed samples of block-sized tumour and lung parenchyma, Temno-needle core tumour biopsies and fine needle tumour aspirates (FNAs) from non-small cell lung cancer resection specimens. Traditionally processed formalin fixed paraffin wax embedded (FFPE) samples were compared to paired PAXgene® tissue fixed paraffin-embedded (PFPE) samples. We evaluated suitability for common laboratory tests (H&E staining and immunohistochemistry) and performance for downstream molecular investigations relevant to lung cancer, including RT-PCR and next generation DNA sequencing (NGS). Adequate and comparable H&E staining was seen in all sample types and nuclear staining was preferable in PAXgene® fixed Temno tumour biopsies and tumour FNA samples. Immunohistochemical staining was broadly comparable. PFPE samples enabled greater yields of less-fragmented DNA than FFPE comparators. PFPE samples were also superior for PCR and NGS performance, both in terms of quality control metrics and for variant calling. Critically we identified a greater number of genetic variants in the epidermal growth factor receptor gene when using PFPE samples and the Ingenuity® Variant Analysis pipeline. In summary, PFPE samples are adequate for histopathological diagnosis and suitable for the majority of existing laboratory tests. PAXgene® fixation is superior for DNA and RNA integrity, particularly in low-yield samples and facilitates improved NGS performance, including the detection of actionable lung cancer mutations for precision medicine in lung cancer samples.


Assuntos
Biomarcadores Tumorais/análise , Fixadores , Neoplasias Pulmonares , Fixação de Tecidos/métodos , Formaldeído , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica/métodos , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
6.
PLoS One ; 13(9): e0203608, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192857

RESUMO

RNA and DNA analyses from paraffin-embedded tissues (PET) are an important diagnostic tool for characterization of a disease, exploring biomarkers and treatment options. Since nucleic acids from formalin-fixed and paraffin-embedded (FFPE) tissue are of limited use for molecular analyses due to chemical modifications of biomolecules alternate, formalin-free fixation reagents such as the PAXgene Tissue system are of evolving interest. Furthermore, biomedical research and biomarker development critically relies on using long-term stored PET from medical archives or biobanks to correlate molecular features with long-term disease outcomes. We therefore performed a comparative study to evaluate the effect of long term storage of FFPE and PAXgene Tissue-fixed and paraffin-embedded (PFPE) tissue at different temperatures on nucleic acid stability and usability in PCR. Matched FFPE and PFPE human tissues from routine clinical setting or rat tissues from a highly controlled animal model were stored at room temperature and 4°C, as well as in case of animal tissues frozen at -20°C and -80°C. RNA and DNA were extracted in intervals for up to nine years, and examined for integrity, and usability in quantitative RT-PCR (RT-qPCR) or PCR (qPCR) assays. PET storage at room temperature led to a degradation of nucleic acids which was slowed down by storage at 4°C and prevented by storage at -20°C or -80°C. Degradation was associated with an amplicon length depending decrease of RT-qPCR and qPCR efficiency. Storage at 4°C improved amplifiability in RT-qPCR and qPCR profoundly. Chemically unmodified nucleic acids from PFPE tissue performed superior compared to FFPE tissue, regardless of storage time and temperature in both human and rat tissues. In conclusion molecular analyses from PET can be greatly improved by using a non-crosslinking fixative and storage at lower temperatures such as 4°C, which should be considered in prospective clinical studies.


Assuntos
Fixadores/efeitos adversos , Ácidos Nucleicos/análise , Inclusão em Parafina , Animais , Criopreservação , Fixadores/farmacologia , Marcadores Genéticos , Humanos , Ácidos Nucleicos/genética , Reação em Cadeia da Polimerase , Estudos Prospectivos , Ratos , Fixação de Tecidos , Preservação de Tecido
7.
J Vis Exp ; (130)2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-29364207

RESUMO

Morphologic assessment of formalin-fixed, paraffin-embedded (FFPE) tissue samples has been the gold standard for cancer diagnostics for decades due to its excellent preservation of morphology. Personalized medicine increasingly provides individually adapted and targeted therapies for characterized individual diseases enabled by combined morphological and molecular analytical technologies and diagnostics. Performance of morphologic and molecular assays from the same FFPE specimen is challenging because of the negative impact of formalin due to chemical modification and cross-linking of nucleic acids and proteins. A non-cross-linking, formalin-free tissue fixative has been recently developed to fulfil both requirements, i.e., to preserve morphology like FFPE and biomolecules like cryo-preservation. Since FISH is often required in combination with histopathology and molecular diagnostics, we tested the applicability of FISH protocols on tissues treated with this new fixative. We found that formalin post-fixation of histological sections of non-cross-linking, formalin-free and paraffin-embedded (NCFPE) breast cancer tissue generated equivalent results to those with FFPE tissue in human epidermal growth factor receptor 2 (HER2) FISH analysis. This protocol describes how a FISH assay originally developed and validated for FFPE tissue can be used for NCFPE tissues by a simple post-fixation step of histological sections.


Assuntos
Neoplasias da Mama/diagnóstico , Criopreservação/métodos , Hibridização in Situ Fluorescente/métodos , Patologia Molecular/métodos , Receptor ErbB-2/genética , Fixação de Tecidos/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Feminino , Humanos
8.
PLoS One ; 11(3): e0151383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26974150

RESUMO

BACKGROUND: Requirements on tissue fixatives are getting more demanding as molecular analysis becomes increasingly relevant for routine diagnostics. Buffered formaldehyde in pathology laboratories for tissue fixation is known to cause chemical modifications of biomolecules which affect molecular testing. A novel non-crosslinking tissue preservation technology, PAXgene Tissue (PAXgene), was developed to preserve the integrity of nucleic acids in a comparable way to cryopreservation and also to preserve morphological features comparable to those of formalin fixed samples. METHODS: Because of the excellent preservation of biomolecules by PAXgene we investigated its pathogen inactivation ability and biosafety in comparison to formalin by in-vitro testing of bacteria, human relevant fungi and human cytomegalovirus (CMV). Guidelines for testing disinfectants served as reference for inactivation assays. Furthermore, we tested the properties of PAXgene for detection of pathogens by PCR based assays. RESULTS: All microorganisms tested were similarly inactivated by PAXgene and formalin except Clostridium sporogenes, which remained viable in seven out of ten assays after PAXgene treatment and in three out of ten assays after formalin fixation. The findings suggest that similar biosafety measures can be applied for PAXgene and formalin fixed samples. Detection of pathogens in PCR-based diagnostics using two CMV assays resulted in a reduction of four to ten quantification cycles of PAXgene treated samples which is a remarkable increase of sensitivity. CONCLUSION: PAXgene fixation might be superior to formalin fixation when molecular diagnostics and highly sensitive detection of pathogens is required in parallel to morphology assessment.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Fixadores/farmacologia , Patologia Molecular , Fixação de Tecidos/métodos , Bactérias/genética , Citomegalovirus/efeitos dos fármacos , Formaldeído/farmacologia , Fungos/genética , Humanos , Viabilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Inativação de Vírus/efeitos dos fármacos
9.
J Mol Diagn ; 14(5): 458-66, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22749745

RESUMO

For accurate diagnosis, prediction of outcome, and selection of appropriate therapies, the molecular characterization of human diseases requires analysis of a broad spectrum of altered biomolecules, in addition to morphological features, in affected tissues such as tumors. In a high-throughput screening approach, we have developed the PAXgene Tissue System as a novel tissue stabilization technology. Comprehensive characterization of this technology in stabilized and paraffin-embedded human tissues and comparison with snap-frozen tissues revealed excellent preservation of morphology and antigenicity, as well as outstanding integrity of nucleic acids (genomic DNA, miRNA, and mRNA) and phosphoproteins. Importantly, PAXgene-fixed, paraffin-embedded tissues provided RNA quantity and quality not only significantly better than that obtained with neutral buffered formalin, but also similar to that from snap-frozen tissue, which currently represents the gold standard for molecular analyses. The PAXgene tissue stabilization system thus opens new opportunities in a variety of molecular diagnostic and research applications in which the collection of snap-frozen tissue is not feasible for medical, logistic, or ethical reasons. Furthermore, this technology allows performing histopathological analyses together with molecular studies in a single sample, which markedly facilitates direct correlation of morphological disease phenotypes with alterations of nucleic acids and other biomolecules.


Assuntos
Manejo de Espécimes/métodos , Preservação de Tecido/métodos , Animais , Humanos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo
10.
PLoS One ; 6(11): e27704, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110732

RESUMO

Within SPIDIA, an EC FP7 project aimed to improve pre analytic procedures, the PAXgene Tissue System (PAXgene), was designed to improve tissue quality for parallel molecular and morphological analysis. Within the SPIDIA project promising results were found in both genomic and proteomic experiments with PAXgene-fixed and paraffin embedded tissue derived biomolecules. But, for this technology to be accepted for use in both clinical and basic research, it is essential that its adequacy for preserving morphology and antigenicity is validated relative to formalin fixation. It is our aim to assess the suitability of PAXgene tissue fixation for (immuno)histological methods. Normal human tissue specimens (n = 70) were collected and divided into equal parts for fixation either with formalin or PAXgene. Sections of the obtained paraffin-embedded tissue were cut and stained. Morphological aspects of PAXgene-fixed tissue were described and also scored relative to formalin-fixed tissue. Performance of PAXgene-fixed tissue in immunohistochemical and in situ hybridization assays was also assessed relative to the corresponding formalin-fixed tissues. Morphology of PAXgene-fixed paraffin embedded tissue was well preserved and deemed adequate for diagnostics in most cases. Some antigens in PAXgene-fixed and paraffin embedded sections were detectable without the need for antigen retrieval, while others were detected using standard, formalin fixation based, immunohistochemistry protocols. Comparable results were obtained with in situ hybridization and histochemical stains. Basically all assessed histological techniques were found to be applicable to PAXgene-fixed and paraffin embedded tissue. In general results obtained with PAXgene-fixed tissue are comparable to those of formalin-fixed tissue. Compromises made in morphology can be called minor compared to the advantages in the molecular pathology possibilities.


Assuntos
Ácidos Nucleicos/metabolismo , Fixação de Tecidos/métodos , Neoplasias da Mama/patologia , Feminino , Formaldeído/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Indicadores e Reagentes/farmacologia , Laboratórios , Ácidos Nucleicos/genética , Inclusão em Parafina , Proteômica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA