Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39111834

RESUMO

MicroRNAs are emerging as crucial regulators within the complex, dynamic environment of the synapse, and they offer a promising new avenue for the treatment of neurological disease. These small noncoding RNAs modify gene expression in several ways, including posttranscriptional modulation via binding to complementary and semicomplementary sites on target mRNAs. This rapid, finely tuned regulation of gene expression is essential to meet the dynamic demands of the synapse. Here, we provide a detailed review of the multifaceted world of synaptic microRNA regulation. We discuss the many mechanisms by which microRNAs regulate gene expression at the synapse, particularly in the context of neuronal plasticity. We also describe the various factors, such as age, sex, and neurological disease, that can influence microRNA expression and activity in neurons. In summary, microRNAs play a crucial role in the intricate and quickly changing functional requirements of the synapse, and context is essential in the study of microRNAs and their potential therapeutic applications.


Assuntos
Encéfalo , MicroRNAs , Plasticidade Neuronal , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Animais , Encéfalo/metabolismo , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/genética , Sinapses/metabolismo , Sinapses/genética , Regulação da Expressão Gênica
2.
Environ Microbiol ; 26(1): e16555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38148519

RESUMO

Many moss species are associated with nitrogen (N)-fixing bacteria (diazotrophs) that support the N supply of mosses. Our knowledge relates primarily to pristine ecosystems with low atmospheric N input, but knowledge of biological N fixation (BNF) and diazotrophic communities in mosses in temperate forests with high N deposition is limited. We measured BNF rates using the direct stable isotope method and studied the total and potentially active diazotrophic communities in two abundant mosses, Brachythecium rutabulum and Hypnum cupressiforme, both growing on lying deadwood trunks in 25 temperate forest sites. BNF rates in both mosses were similar to those observed in moss species of pristine ecosystems. H. cupressiforme fixed three times more N2 and exhibited lower diazotrophic richness than B. rutabulum. Frankia was the most prominent diazotroph followed by cyanobacteria Nostoc. Manganese, iron, and molybdenum contents in mosses were positively correlated with BNF and diazotrophic communities. Frankia maintained high BNF rates in H. cupressiforme and B. rutabulum even under high chronic N deposition in Central European forests. Moss N concentration and 15 N abundance indicate a rather minor contribution of BNF to the N nutrition of these mosses.


Assuntos
Briófitas , Bryopsida , Nostoc , Ecossistema , Fixação de Nitrogênio , Florestas , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA