Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(23): e2215195120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253004

RESUMO

The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Receptores de Superfície Celular/metabolismo , Etilenos/metabolismo , Transdução de Sinais/fisiologia
2.
Biophys J ; 121(20): 3862-3873, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36086818

RESUMO

Herein, we present, to our knowledge, the first spectroscopic characterization of the Cu(I) active site of the plant ethylene receptor ETR1. The x-ray absorption (XAS) and extended x-ray absorption fine structure (EXAFS) spectroscopies presented here establish that ETR1 has a low-coordinate Cu(I) site. The EXAFS resolves a mixed first coordination sphere of N/O and S scatterers at distances consistent with potential histidine and cysteine residues. This finding agrees with the coordination of residues C65 and H69 to the Cu(I) site, which are critical for ethylene activity and well conserved. Furthermore, the Cu K-edge XAS and EXAFS of ETR1 exhibit spectroscopic changes upon addition of ethylene that are attributed to modifications in the Cu(I) coordination environment, suggestive of ethylene binding. Results from umbrella sampling simulations of the proposed ethylene binding helix of ETR1 at a mixed quantum mechanics/molecular mechanics level agree with the EXAFS fit distance changes upon ethylene binding, particularly in the increase of the distance between H69 and Cu(I), and yield binding energetics comparable with experimental dissociation constants. The observed changes in the copper coordination environment might be the triggering signal for the transmission of the ethylene response.


Assuntos
Cobre , Histidina , Sítios de Ligação , Cobre/química , Cisteína/química , Etilenos , Espectroscopia por Absorção de Raios X , Receptores de Superfície Celular
3.
PLoS Comput Biol ; 16(5): e1007767, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365068

RESUMO

Many proteins have the potential to aggregate into amyloid fibrils, protein polymers associated with a wide range of human disorders such as Alzheimer's and Parkinson's disease. The thermodynamic stability of amyloid fibrils, in contrast to that of folded proteins, is not well understood: the balance between entropic and enthalpic terms, including the chain entropy and the hydrophobic effect, are poorly characterised. Using a combination of theory, in vitro experiments, simulations of a coarse-grained protein model and meta-data analysis, we delineate the enthalpic and entropic contributions that dominate amyloid fibril elongation. Our prediction of a characteristic temperature-dependent enthalpic signature is confirmed by the performed calorimetric experiments and a meta-analysis over published data. From these results we are able to define the necessary conditions to observe cold denaturation of amyloid fibrils. Overall, we show that amyloid fibril elongation is associated with a negative heat capacity, the magnitude of which correlates closely with the hydrophobic surface area that is buried upon fibril formation, highlighting the importance of hydrophobicity for fibril stability.


Assuntos
Amiloide/química , Amiloide/fisiologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/fisiologia , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Simulação de Dinâmica Molecular , Desnaturação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica
4.
Blood ; 132(3): 307-320, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29724897

RESUMO

Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Resposta ao Choque Térmico/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Domínios e Motivos de Interação entre Proteínas , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Animais , Antineoplásicos/química , Sítios de Ligação , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/química , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Mesilato de Imatinib/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Multimerização Proteica/efeitos dos fármacos , Análise Espectral , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Biochem J ; 475(18): 2925-2939, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30054433

RESUMO

F1-ATPase forms the membrane-associated segment of F0F1-ATP synthase - the fundamental enzyme complex in cellular bioenergetics for ATP hydrolysis and synthesis. Here, we report a crystal structure of the central F1 subcomplex, consisting of the rotary shaft γ subunit and the inhibitory ε subunit, from the photosynthetic cyanobacterium Thermosynechococcus elongatus BP-1, at 1.98 Šresolution. In contrast with their homologous bacterial and mitochondrial counterparts, the γ subunits of photosynthetic organisms harbour a unique insertion of 35-40 amino acids. Our structural data reveal that this region forms a ß-hairpin structure along the central stalk. We identified numerous critical hydrogen bonds and electrostatic interactions between residues in the hairpin and the rest of the γ subunit. To elaborate the critical function of this ß-hairpin in inhibiting ATP hydrolysis, the corresponding domain was deleted in the cyanobacterial F1 subcomplex. Biochemical analyses of the corresponding α3ß3γ complex confirm that the clinch of the hairpin structure plays a critical role and accounts for a significant interaction in the α3ß3 complex to induce ADP inhibition during ATP hydrolysis. In addition, we found that truncating the ß-hairpin insertion structure resulted in a marked impairment of the interaction with the ε subunit, which binds to the opposite side of the γ subunit from the ß-hairpin structure. Combined with structural analyses, our work provides experimental evidence supporting the molecular principle of how the insertion region of the γ subunit suppresses F1 rotation during ATP hydrolysis.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Cianobactérias/enzimologia , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Hidrólise , Estrutura Secundária de Proteína , ATPases Translocadoras de Prótons/metabolismo
6.
J Sci Food Agric ; 99(8): 3903-3909, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30693519

RESUMO

BACKGROUND: Processes extending the shelf life of climacteric fruit play an important role in terms of a sustainable global food supply. In a previous study, a synthetic octapeptide (NOP-1) was shown to inhibit the interaction between ethylene receptor (ETR) and ethylene insensitive-2 (EIN2), and in consequence delay tomato ripening. We investigated for the first time the effect of NOP-1 on inhibiting the ripening of apples ('Golden Delicious') during postharvest. RESULTS: Using purified recombinant proteins from a bacterial expression system, we demonstrate here that EIN2 also interacts tightly (Kd = 136 ± 29 nmol L-1 ) with the corresponding apple ETR MdETR1. In line with previous binding studies on tomato ETRs, the ripening-delaying peptide NOP-1 clearly binds to the purified apple ETR. An NOP-1 solution (1000 µmol L-1 ) was applied with a brush or microdispenser and compared with apples treated with 1-methylcyclopropene (1-MCP) (SmartFresh™, Agrofresh) applied as gaseous treatment or untreated control fruits. NOP-1 inhibited colour development and chlorophyll degradation during shelf life. These effects were more pronounced with the brush application (surface film) than with microdroplets application (mimicking a sprayable formulation). NOP-1 did not alter ethylene release or respiration rate, whereas 1-MCP expectedly strongly suppressed both. There were no differences in quality parameters evaluated. CONCLUSION: Our study shows that NOP-1 binds to MdETR1 which results in delaying of ethylene-dependent ripening developments of skin colour and chlorophyll. Besides application methods, possible reasons for the weak effect of NOP-1 in comparison with previous tomato experiments could be different receptor affinity and penetration differences. © 2019 Society of Chemical Industry.


Assuntos
Frutas/química , Frutas/crescimento & desenvolvimento , Malus/efeitos dos fármacos , Peptídeos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Ciclopropanos/farmacologia , Etilenos/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/genética , Malus/crescimento & desenvolvimento , Malus/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
7.
Chembiochem ; 19(5): 478-485, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266604

RESUMO

Previous studies on cytochrome P450 monooxygenases (CYP) from family 154 reported their substrate promiscuity and high activity. Hence, herein, the uncharacterized family member CYP154F1 is described. Screening of more than 100 organic compounds revealed that CYP154F1 preferably accepts small linear molecules with a carbon chain length of 8-10 atoms. In contrast to thoroughly characterized CYP154E1, CYP154F1 has a much narrower substrate spectrum and lower activity. A structural alignment of homology models of CYP154F1 and CYP154E1 revealed few differences in the active sites of both family members. By gradual mutagenesis of the CYP154F1 active site towards those of CYP154E1, a key residue accounting for the different activities of both enzymes was identified at position 234. Substitution of T234 for large hydrophobic amino acids led to up to tenfold higher conversion rates of small substrates, such as geraniol. Replacement of T234 by small hydrophobic amino acids, valine or alanine, resulted in mutants with extended substrate spectra. These mutants are able to convert some of the larger substrates of CYP154E1, such as (E)-stilbene and (+)-nootkatone.


Assuntos
Actinobacteria/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/metabolismo , Monoterpenos Acíclicos , Sequência de Aminoácidos , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Sesquiterpenos Policíclicos , Alinhamento de Sequência , Sesquiterpenos/metabolismo , Estilbenos/metabolismo , Especificidade por Substrato , Terpenos/metabolismo
8.
Biochim Biophys Acta ; 1860(6): 1043-55, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26774645

RESUMO

BACKGROUND: Small molecules targeting the dimerization interface of the C-terminal domain of Hsp90, a validated target for cancer treatment, have yet to be identified. METHODS: Three peptides were designed with the aim to inhibit the dimerization of Hsp90. Computational and biophysical methods examined the α-helical structure for the three peptides. Based on the Autodisplay technology, a novel flow cytometer dimerization assay was developed to test inhibition of Hsp90 dimerization. Microscale thermophoresis was used to determine the K(D) of the peptides towards the C-terminal domain of Hsp90. RESULTS: MD simulations and CD spectroscopy indicated an α-helical structure for two of the three peptides. By flow cytometer analysis, IC(50) values of 2.08 µM for peptide H2 and 8.96 µM for peptide H3 were determined. Dimer formation of the C-terminal dimerization domain was analyzed by microscale thermophoresis, and a K(D) of 1.29 nM was determined. Furthermore, microscale thermophoresis studies demonstrated a high affinity binding of H2 and H3 to the C-terminal domain, with a K(D) of 1.02 µM and 1.46 µM, respectively. CONCLUSIONS: These results revealed the first peptidic inhibitors of Hsp90 dimerization targeting the C-terminal domain. Furthermore, it has been shown that these peptides bind to the C-terminal domain with a low micromolar affinity. GENERAL SIGNIFICANCE: These results can be used to design and screen for small molecules that inhibit the dimerization of the C-terminal domain of Hsp90, which could open a new route for cancer therapy.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Multimerização Proteica , Sequência de Aminoácidos , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/fisiologia , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína
9.
Mol Biol Evol ; 31(5): 1089-101, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24408912

RESUMO

Glycolate oxidase (GOX) is a crucial enzyme of plant photorespiration. The encoding gene is thought to have originated from endosymbiotic gene transfer between the eukaryotic host and the cyanobacterial endosymbiont at the base of plantae. However, animals also possess GOX activities. Plant and animal GOX belong to the gene family of (L)-2-hydroxyacid-oxidases ((L)-2-HAOX). We find that all (L)-2-HAOX proteins in animals and archaeplastida go back to one ancestral eukaryotic sequence; the sole exceptions are green algae of the chlorophyta lineage. Chlorophyta replaced the ancestral eukaryotic (L)-2-HAOX with a bacterial ortholog, a lactate oxidase that may have been obtained through the primary endosymbiosis at the base of plantae; independent losses of this gene may explain its absence in other algal lineages (glaucophyta, rhodophyta, and charophyta). We also show that in addition to GOX, plants possess (L)-2-HAOX proteins with different specificities for medium- and long-chain hydroxyacids (lHAOX), likely involved in fatty acid and protein catabolism. Vertebrates possess lHAOX proteins acting on similar substrates as plant lHAOX; however, the existence of GOX and lHAOX subfamilies in both plants and animals is not due to shared ancestry but is the result of convergent evolution in the two most complex eukaryotic lineages. On the basis of targeting sequences and predicted substrate specificities, we conclude that the biological role of plantae (L)-2-HAOX in photorespiration evolved by co-opting an existing peroxisomal protein.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Evolução Molecular , Plantas/enzimologia , Plantas/genética , Oxirredutases do Álcool/química , Animais , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Duplicação Gênica , Transferência Genética Horizontal , Genes de Plantas , Especiação Genética , Modelos Moleculares , Filogenia , Conformação Proteica , Homologia Estrutural de Proteína , Especificidade por Substrato , Simbiose/genética
10.
Plant Physiol ; 165(3): 1076-1091, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24850859

RESUMO

The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.

11.
Proc Natl Acad Sci U S A ; 109(47): 19486-91, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132950

RESUMO

The gaseous phytohormone ethylene C(2)H(4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Etilenos/metabolismo , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Núcleo Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Etilenos/farmacologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Quinases/química , Transporte Proteico/efeitos dos fármacos , Receptores de Superfície Celular/química , Transdução de Sinais/efeitos dos fármacos
12.
FEBS J ; 291(6): 1102-1110, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232057

RESUMO

Our viewpoint is that ethanol could act as a molecular messenger in animal and plant organisms under conditions of hypoxia or other stresses and could elicit physiological responses to such conditions. There is evidence that both animal and plant organisms have endogenous levels of ethanol, but reports on the changes induced by this alcohol at physiological levels are sparse. Studies have shown that ethanol has different effects on cell metabolism at low and high concentrations, resembling a hormetic response. Further studies have addressed the potential cellular and molecular mechanisms used by organisms to sense changes in physiological concentrations of ethanol. This article summarizes the possible mechanisms by which ethanol may be sensed, particularly at the cell membrane level. Our analysis shows that current knowledge on this subject is limited. More research is required on the effects of ethanol at very low doses, in plants and animals at both molecular and physiological levels. We believe that further research on this topic could lead to new discoveries in physiology and may even help us understand metabolic adjustments related to climate change. As temperatures rise more frequently, dissolved oxygen levels drop, leading to hypoxic conditions and consequently, an increase in cellular ethanol levels.


Assuntos
Etanol , Hipóxia , Animais , Etanol/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Plantas/metabolismo , Membrana Celular/metabolismo
13.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540793

RESUMO

The plant hormone ethylene is a key regulator of plant growth, development, and stress adaptation. Many ethylene-related responses, such as abscission, seed germination, or ripening, are of great importance to global agriculture. Ethylene perception and response are mediated by a family of integral membrane receptors (ETRs), which form dimers and higher-order oligomers in their functional state as determined by the binding of Cu(I), a cofactor to their transmembrane helices in the ER-Golgi endomembrane system. The molecular structure and signaling mechanism of the membrane-integral sensor domain are still unknown. In this article, we report on the crystallization of transmembrane (TM) and membrane-adjacent domains of plant ethylene receptors by Lipidic Cubic Phase (LCP) technology using vapor diffusion in meso crystallization. The TM domain of ethylene receptors ETR1 and ETR2, which is expressed in E. coli in high quantities and purity, was successfully crystallized using the LCP approach with different lipids, lipid mixtures, and additives. From our extensive screening of 9216 conditions, crystals were obtained from identical crystallization conditions for ETR1 (aa 1-316) and ETR2 (aa 1-186), diffracting at a medium-high resolution of 2-4 Å. However, data quality was poor and not sufficient for data processing or further structure determination due to rotational blur and high mosaicity. Metal ion loading and inhibitory peptides were explored to improve crystallization. The addition of Zn(II) increased the number of well-formed crystals, while the addition of ripening inhibitory peptide NIP improved crystal morphology. However, despite these improvements, further optimization of crystallization conditions is needed to obtain well-diffracting, highly-ordered crystals for high-resolution structural determination. Overcoming these challenges will represent a major breakthrough in structurally determining plant ethylene receptors and promote an understanding of the molecular mechanisms of ethylene signaling.


Assuntos
Escherichia coli , Reguladores de Crescimento de Plantas , Cristalização , Escherichia coli/metabolismo , Etilenos/metabolismo
14.
J Biol Chem ; 287(43): 36536-43, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22942277

RESUMO

The rotation of F(1)F(o)-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane F(o) domain, which is coupled to the ATP-producing F(1) domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the "locked" and "open" conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F(1)F(o)-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.


Assuntos
Simulação de Dinâmica Molecular , ATPases Translocadoras de Prótons/química , Prótons , Água/química , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Água/metabolismo
15.
Biochem J ; 444(2): 261-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22390794

RESUMO

The plant hormone ethylene is involved in many developmental processes and responses to environmental stresses in plants. Although the elements of the signalling cascade and the receptors operating the ethylene pathway have been identified, a detailed understanding of the molecular processes related to signal perception and transfer is still lacking. Analysis of these processes using purified proteins in physical, structural and functional studies is complicated by the gaseous character of the plant hormone. In the present study, we show that cyanide, a π-acceptor compound and structural analogue of ethylene, is a suitable substitute for the plant hormone for in vitro studies with purified proteins. Recombinant ethylene receptor protein ETR1 (ethylene-resistant 1) showed high level and selective binding of [(14)C]cyanide in the presence of copper, a known cofactor in ethylene binding. Replacement of Cys(65) in the ethylene-binding domain by serine dramatically reduced binding of radiolabelled cyanide. In contrast with wild-type ETR1, autokinase activity of the receptor is not reduced in the ETR1-C65S mutant upon addition of cyanide. Additionally, protein-protein interaction with the ethylene signalling protein EIN2 (ethylene-insensitive 2) is considerably sustained by cyanide in wild-type ETR1, but is not affected in the mutant. Further evidence for the structural and functional equivalence of ethylene and cyanide is given by the fact that the ethylene-responsive antagonist silver, which is known to allow ligand binding but prevent intrinsic signal transduction, also allows specific binding of cyanide, but shows no effect on autokinase activity and ETR1-EIN2 interaction.


Assuntos
Proteínas de Arabidopsis/fisiologia , Cianetos/metabolismo , Etilenos/agonistas , Etilenos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre/metabolismo , Cianetos/farmacologia , Relação Dose-Resposta a Droga , Mutação , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Ligação Proteica/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo
16.
Mol Membr Biol ; 29(2): 26-35, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22416963

RESUMO

Orthologous proteins do not necessarily share the same function in all species and those sharing the same function might employ a modified catalytic mechanism. Thus, comparative analysis of homologous or orthologous proteins from different organisms can provide detailed information on the function and the mechanism of an entire protein family. The sensor kinase ETR1 from Arabidopsis thaliana has been well characterized by genetic, physiological and biochemical studies. However, as further model plants are coming into focus for plant hormone research, a general protocol for isolation and purification of orthologous ETR1 proteins seems instrumental for a detailed molecular analysis of this protein family. In this study, we describe the native purification of recombinant ETR1 from Arabidopsis thaliana by mild solubilization with the zwitter-ionic detergent Fos-Choline-14 and single-step purification by immobilized metal ion affinity chromatography. The same protocol was successfully applied for the purification of the orthologous proteins from the moss Physcomitrella patens subsp. patens and the tomato Lycopersicon esculentum. The successful transfer of the purification protocol to proteins of the same family which share sequence identity of 63-80% only suggests that this protocol presents a general purification strategy which is likely to apply also to the purification of other members of the sensor histidine kinase family.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Proteínas Quinases/isolamento & purificação , Receptores de Superfície Celular/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Bryopsida/enzimologia , Bryopsida/genética , Clonagem Molecular , Sequência Consenso , Escherichia coli/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Temperatura
17.
Chem Commun (Camb) ; 59(61): 9344-9347, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37435887

RESUMO

The plant hormone receptor ETR1 regulates many highly relevant agronomic processes. Today, significant functional and structural questions remain unanswered regarding its multi-pass transmembrane sensor domain able to bind and respond to the gaseous plant hormone ethylene at femtomolar concentrations. A significant reason for this is the lack of structural data on full-length ETR1 in a lipid environment. Herein, we present the functional reconstitution of recombinant full-length ETR1 purified and solubilized from a bacterial host into lipid nanodiscs, allowing the study of the purified plant receptor for the first time in a detergent-free membrane-like environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Receptores de Superfície Celular/metabolismo , Etilenos , Domínios Proteicos , Lipídeos , Proteínas de Arabidopsis/metabolismo
18.
Plants (Basel) ; 11(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015451

RESUMO

Recent technological advances allow us to resolve molecular processes in living cells with high spatial and temporal resolution. Based on these technological advances, membraneless intracellular condensates formed by reversible functional aggregation and phase separation have been identified as important regulatory modules in diverse biological processes. Here, we present bioinformatic and cellular studies highlighting the possibility of the involvement of the central activator of ethylene responses EIN2 in such cellular condensates and phase separation processes. Our work provides insight into the molecular type (identity) of the observed EIN2 condensates and on potential intrinsic elements and sequence motifs in EIN2-C that may regulate condensate formation and dynamics.

19.
RSC Adv ; 12(12): 7352-7356, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424698

RESUMO

The plant ethylene receptor ETR1 is a key player in the perception of the phytohormone and subsequent downstream ethylene signal transmission, crucial for processes such as ripening, senescence and abscission. However, to date, there is sparse structural knowledge about the transmembrane sensor domain (TMD) of ETR1 that is responsible for the binding of the plant hormone and initiates the downstream signal transmission. Sequence information and ab initio modelling suggest that the TMD consists of three transmembrane helices. Here, we combined site-directed spin labelling with electron paramagnetic resonance spectroscopy and obtained distance restraints for liposome-reconstituted ETR1_TMD on the orientation and arrangement of the transmembrane helices. We used these data to scrutinize different computational structure predictions of the TMD.

20.
Sci Rep ; 12(1): 14158, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986043

RESUMO

Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/metabolismo , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA