Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(1-2): 147-161.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328910

RESUMO

Trained innate immunity fosters a sustained favorable response of myeloid cells to a secondary challenge, despite their short lifespan in circulation. We thus hypothesized that trained immunity acts via modulation of hematopoietic stem and progenitor cells (HSPCs). Administration of ß-glucan (prototypical trained-immunity-inducing agonist) to mice induced expansion of progenitors of the myeloid lineage, which was associated with elevated signaling by innate immune mediators, such as IL-1ß and granulocyte-macrophage colony-stimulating factor (GM-CSF), and with adaptations in glucose metabolism and cholesterol biosynthesis. The trained-immunity-related increase in myelopoiesis resulted in a beneficial response to secondary LPS challenge and protection from chemotherapy-induced myelosuppression in mice. Therefore, modulation of myeloid progenitors in the bone marrow is an integral component of trained immunity, which to date, was considered to involve functional changes of mature myeloid cells in the periphery.


Assuntos
Imunidade Inata , Memória Imunológica , Células Progenitoras Mieloides/imunologia , Animais , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Progenitoras Mieloides/efeitos dos fármacos , Mielopoese/imunologia , beta-Glucanas/farmacologia
2.
Nat Immunol ; 20(1): 40-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455459

RESUMO

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Periodontite/imunologia , Adulto , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Reprogramação Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular , Células K562 , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose
3.
Nature ; 590(7845): 326-331, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505018

RESUMO

Resistance to insulin and insulin-like growth factor 1 (IGF1) in pancreatic ß-cells causes overt diabetes in mice; thus, therapies that sensitize ß-cells to insulin may protect patients with diabetes against ß-cell failure1-3. Here we identify an inhibitor of insulin receptor (INSR) and IGF1 receptor (IGF1R) signalling in mouse ß-cells, which we name the insulin inhibitory receptor (inceptor; encoded by the gene Iir). Inceptor contains an extracellular cysteine-rich domain with similarities to INSR and IGF1R4, and a mannose 6-phosphate receptor domain that is also found in the IGF2 receptor (IGF2R)5. Knockout mice that lack inceptor (Iir-/-) exhibit signs of hyperinsulinaemia and hypoglycaemia, and die within a few hours of birth. Molecular and cellular analyses of embryonic and postnatal pancreases from Iir-/- mice showed an increase in the activation of INSR-IGF1R in Iir-/- pancreatic tissue, resulting in an increase in the proliferation and mass of ß-cells. Similarly, inducible ß-cell-specific Iir-/- knockout in adult mice and in ex vivo islets led to an increase in the activation of INSR-IGF1R and increased proliferation of ß-cells, resulting in improved glucose tolerance in vivo. Mechanistically, inceptor interacts with INSR-IGF1R to facilitate clathrin-mediated endocytosis for receptor desensitization. Blocking this physical interaction using monoclonal antibodies against the extracellular domain of inceptor resulted in the retention of inceptor and INSR at the plasma membrane to sustain the activation of INSR-IGF1R in ß-cells. Together, our findings show that inceptor shields insulin-producing ß-cells from constitutive pathway activation, and identify inceptor as a potential molecular target for INSR-IGF1R sensitization and diabetes therapy.


Assuntos
Glicemia/metabolismo , Antagonistas da Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Animais , Glicemia/análise , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Clatrina/metabolismo , Células Endócrinas/metabolismo , Endocitose , Retículo Endoplasmático/metabolismo , Teste de Tolerância a Glucose , Complexo de Golgi/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Lisossomos/metabolismo , Masculino , Proteínas de Membrana , Camundongos , Proteínas de Neoplasias/química , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia
4.
Hepatology ; 75(4): 881-897, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34519101

RESUMO

BACKGROUND AND AIMS: NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS: Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS: HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.


Assuntos
Carcinoma Hepatocelular , Proteína Semelhante a ELAV 1 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/patologia , Proteína Semelhante a ELAV 1/metabolismo , Homeostase , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , RNA , Triglicerídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(14): 4334-9, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25805821

RESUMO

The epidermal growth factor receptor (EGFR) regulates several critical cellular processes and is an important target for cancer therapy. In lieu of a crystallographic structure of the complete receptor, atomistic molecular dynamics (MD) simulations have recently shown that they can excel in studies of the full-length receptor. Here we present atomistic MD simulations of the monomeric N-glycosylated human EGFR in biomimetic lipid bilayers that are, in parallel, also used for the reconstitution of full-length receptors. This combination enabled us to experimentally validate our simulations, using ligand binding assays and antibodies to monitor the conformational properties of the receptor reconstituted into membranes. We find that N-glycosylation is a critical determinant of EGFR conformation, and specifically the orientation of the EGFR ectodomain relative to the membrane. In the absence of a structure for full-length, posttranslationally modified membrane receptors, our approach offers new means to structurally define and experimentally validate functional properties of cell surface receptors in biomimetic membrane environments.


Assuntos
Receptores ErbB/química , Anticorpos Monoclonais/química , Membrana Celular/metabolismo , Simulação por Computador , Glicosilação , Humanos , Ligantes , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteolipídeos/química , Software
7.
Biophys J ; 108(9): 2201-11, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954878

RESUMO

The existence of membrane-rafts helps to conceptually understand the spatiotemporal organization of membrane-associated events (signaling, fusion, fission, etc.). However, as rafts themselves are nanoscopic, dynamic, and transient assemblies, they cannot be directly observed in a metabolizing cell by traditional microscopy. The observation of phase separation in giant plasma membrane-derived vesicles from live cells is a powerful tool for studying lateral heterogeneity in eukaryotic cell membranes, specifically in the context of membrane rafts. Microscopic phase separation is detectable by fluorescent labeling, followed by cooling of the membranes below their miscibility phase transition temperature. It remains unclear, however, if this lipid-driven process is tuneable in any way by interactions with proteins. Here, we demonstrate that MPP1, a member of the MAGUK family, can modulate membrane properties such as the fluidity and phase separation capability of giant plasma membrane-derived vesicles. Our data suggest that physicochemical domain properties of the membrane can be modulated, without major changes in lipid composition, through proteins such as MPP1.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Humanos , Fluidez de Membrana
8.
Biochim Biophys Acta ; 1841(8): 1049-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24374254

RESUMO

The cell membrane serves, at the same time, both as a barrier that segregates as well as a functional layer that facilitates selective communication. It is characterized as much by the complexity of its components as by the myriad of signaling process that it supports. And, herein lays the problems in its study and understanding of its behavior - it has a complex and dynamic nature that is further entangled by the fact that many events are both temporal and transient in their nature. Model membrane systems that bypass cellular complexity and compositional diversity have tremendously accelerated our understanding of the mechanisms and biological consequences of lipid-lipid and protein-lipid interactions. Concurrently, in some cases, the validity and applicability of model membrane systems are tarnished by inherent methodical limitations as well as undefined quality criteria. In this review we introduce membrane model systems widely used to study protein-lipid interactions in the context of key parameters of the membrane that govern lipid availability for peripheral membrane proteins. This article is part of a Special Issue entitled Tools to study lipid functions.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Bicamadas Lipídicas , Lipossomos , Ligação Proteica
10.
Anal Chem ; 86(8): 3722-6, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24628620

RESUMO

Protein-lipid interactions within the membrane are difficult to detect with mass spectrometry because of the hydrophobicity of tryptic cleavage peptides on the one hand and the noncovalent nature of the protein-lipid interaction on the other hand. Here we describe a proof-of-principle method capable of resolving hydrophobic and acylated (e.g., myristoylated) peptides by optimizing the steps in a mass spectrometric workflow. We then use this optimized workflow to detect a protein-lipid interaction in vitro within the hydrophobic phase of the membrane that is preserved via a covalent cross-link using a photoactivatable lipid. This approach can also be used to map the site of a protein-lipid interaction as we identify the peptide in contact with the fatty acid part of ceramide in the START domain of the CERT protein.


Assuntos
Lipídeos/química , Membranas/química , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ceramidas/análise , Reagentes de Ligações Cruzadas , Ácidos Graxos/análise , Hidrólise , Modelos Moleculares , Octanóis/química , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteolipídeos , Solventes , Tripsina
11.
Proc Natl Acad Sci U S A ; 108(28): 11411-6, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709267

RESUMO

Biological membranes are compartmentalized for functional diversity by a variety of specific protein-protein, protein-lipid, and lipid-lipid interactions. A subset of these are the preferential interactions between sterols, sphingolipids, and saturated aliphatic lipid tails responsible for liquid-liquid domain coexistence in eukaryotic membranes, which give rise to dynamic, nanoscopic assemblies whose coalescence is regulated by specific biochemical cues. Microscopic phase separation recently observed in isolated plasma membranes (giant plasma membrane vesicles and plasma membrane spheres) (i) confirms the capacity of compositionally complex membranes to phase separate, (ii) reflects the nanoscopic organization of live cell membranes, and (iii) provides a versatile platform for the investigation of the compositions and properties of the phases. Here, we show that the properties of coexisting phases in giant plasma membrane vesicles are dependent on isolation conditions--namely, the chemicals used to induce membrane blebbing. We observe strong correlations between the relative compositions and orders of the coexisting phases, and their resulting miscibility. Chemically unperturbed plasma membranes reflect these properties and validate the observations in chemically induced vesicles. Most importantly, we observe domains with a continuum of varying stabilities, orders, and compositions induced by relatively small differences in isolation conditions. These results show that, based on the principle of preferential association of raft lipids, domains of various properties can be produced in a membrane environment whose complexity is reflective of biological membranes.


Assuntos
Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Animais , Fracionamento Celular/métodos , Linhagem Celular , Ditiotreitol , Etilmaleimida , Formaldeído , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Biológicos , Estrutura Molecular , Polímeros , Ratos
12.
Proc Natl Acad Sci U S A ; 108(22): 9044-8, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21571640

RESUMO

The human epidermal growth factor receptor (EGFR) is a key representative of tyrosine kinase receptors, ubiquitous actors in cell signaling, proliferation, differentiation, and migration. Although the receptor is well-studied, a central issue remains: How does the compositional diversity and functional diversity of the surrounding membrane modulate receptor function? Reconstituting human EGFR into proteoliposomes of well-defined and controlled lipid compositions represents a minimal synthetic approach to systematically address this question. We show that lipid composition has little effect on ligand-binding properties of the EGFR but rather exerts a profound regulatory effect on kinase domain activation. Here, the ganglioside GM3 but not other related lipids strongly inhibited the autophosphorylation of the EGFR kinase domain. This inhibitory action of GM3 was only seen in liposomes compositionally poised to phase separate into coexisting liquid domains. The inhibition by GM3 was released by either removing the neuraminic acid of the GM3 headgroup or by mutating a membrane proximal lysine of EGFR (K642G). Our results demonstrate that GM3 exhibits the potential to regulate the allosteric structural transition from inactive to a signaling EGFR dimer, by preventing the autophosphorylation of the intracellular kinase domain in response to ligand binding.


Assuntos
Receptores ErbB/biossíntese , Receptores ErbB/genética , Gangliosídeo G(M3)/química , Regulação da Expressão Gênica , Lipídeos/química , Sítio Alostérico , Movimento Celular , Proliferação de Células , Dimerização , Relação Dose-Resposta a Droga , Glicolipídeos/química , Humanos , Microdomínios da Membrana , Fosforilação , Proteolipídeos/química , Transdução de Sinais
13.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421874

RESUMO

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulina/metabolismo , Proteômica , Lipidômica , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Exocitose , Vesículas Secretórias/metabolismo , Grânulos Citoplasmáticos/metabolismo
14.
J Biol Chem ; 287(23): 18974-84, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22496366

RESUMO

S-Acylation of proteins is a ubiquitous post-translational modification and a common signal for membrane association. The major palmitoylated protein in erythrocytes is MPP1, a member of the MAGUK family and an important component of the ternary complex that attaches the spectrin-based skeleton to the plasma membrane. Here we show that DHHC17 is the only acyltransferase present in red blood cells (RBC). Moreover, we give evidence that protein palmitoylation is essential for membrane organization and is crucial for proper RBC morphology, and that the effect is specific for MPP1. Our observations are based on the clinical cases of two related patients whose RBC had no palmitoylation activity, caused by a lack of DHHC17 in the membrane, which resulted in a strong decrease of the amount of detergent-resistant membrane (DRM) material. We confirmed that this loss of detergent-resistant membrane was due to the lack of palmitoylation by treatment of healthy RBC with 2-bromopalmitic acid (2-BrP, common palmitoylation inhibitor). Concomitantly, fluorescence lifetime imaging microscopy (FLIM) analyses of an order-sensing dye revealed a reduction of membrane order after chemical inhibition of palmitoylation in erythrocytes. These data point to a pathophysiological relationship between the loss of MPP1-directed palmitoylation activity and perturbed lateral membrane organization.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Eritrocítica/metabolismo , Lipoilação , Proteínas de Membrana/metabolismo , Acetilação , Aciltransferases/genética , Aciltransferases/metabolismo , Adulto , Proteínas Sanguíneas/genética , Pré-Escolar , Membrana Eritrocítica/genética , Humanos , Masculino , Proteínas de Membrana/genética
15.
Biochim Biophys Acta ; 1818(7): 1777-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22450237

RESUMO

Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GMI exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Membrana Celular/metabolismo , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Difusão , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Gangliosídeo G(M1)/química , Gangliosídeo G(M1)/metabolismo , Ligantes , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Nanotecnologia , Ligação Proteica , Espectrometria de Fluorescência , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
16.
Arch Biochem Biophys ; 535(2): 205-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23578573

RESUMO

Analyses of the status of the membrane spectrin-based skeleton during fludarabine/mitoxantrone/dexamethasone-induced (FND-induced) apoptosis revealed proteolytic degradation of ß-spectrin, with the prevalent appearance of a specific fragment with a molecular weight of ~55kDa, containing the actin-binding domain (ABD). Appearance of this fragment was dependent on induction of apoptosis. In silico proteolysis of spectrin identified caspase-8 as a candidate protease responsible for the generation of this ~55kDa ABD-containing fragment. Analyses of spectrin and procaspase-8 localization during early apoptosis indicated temporary (<30-120min) submembranous colocalization of both proteins. Proteolytic release of the N-terminal ~55kDa fragment of purified spectrin by recombinant caspase-8 does not occur in normal cells, but does occur in isolated membrane, such as red blood cell ghosts, or in vitro in the presence of apoptotic cell extracts. Surprisingly, proteolysis of purified spectrin by recombinant caspase-8 resulted in the generation of the ~55kDa fragment only in the presence of purified protein 4.1. This suggests that only the appropriate spatial arrangement of the spectrin-based membrane skeleton or the appropriate conformational state of spectrin, which are both known to be induced by 4.1, can sensitize ß-spectrin to cleavage by caspase-8 at the N-terminal ABD-containing region.


Assuntos
Actinas/metabolismo , Antineoplásicos/farmacologia , Apoptose , Caspase 8/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Encéfalo/metabolismo , Inibidores de Caspase/farmacologia , Dexametasona/farmacologia , Interações Medicamentosas , Membrana Eritrocítica/metabolismo , Humanos , Células Jurkat , Mitoxantrona/farmacologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteólise , Suínos , Vidarabina/análogos & derivados , Vidarabina/farmacologia
17.
Nat Chem Biol ; 7(5): 260-2, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21460830

RESUMO

We document a new dimension of surface recognition in which communication is controlled through the collective behavior of lipids. Membrane cholesterol induces a tilt in glycolipid receptor headgroup, resulting in loss of access for ligand binding. This property appears to organize erythrocyte blood group presentation and glycolipid receptor function during the activation of sperm fertility, suggesting that lipid 'allostery' is a means to regulate membrane recognition processes.


Assuntos
Colesterol/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Colesterol/química , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Conformação Molecular , Maturação do Esperma
18.
Proc Natl Acad Sci U S A ; 107(41): 17633-8, 2010 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-20861448

RESUMO

Galectins are unconventionally secreted lectins that participate in the formation of glycoprotein lattices that perform a variety of cell surface functions. Galectins also bind glycosphingolipid headgroups with as yet unclear implications for cellular physiology. We report a specific interaction between galectin-9 and the Forssman glycosphingolipid (FGL) that is important for polarizing Madin-Darby canine kidney epithelial cells. Galectin-9 knockdown leads to a severe loss of epithelial polarity that can be rescued by addition of the recombinant protein. The FGL glycan is identified as the surface receptor that cycles galectin-9 to the Golgi apparatus from which the protein is recycled back to the apical surface. Together our results suggest a model wherein such glycosphingolipid-galectin couples form a circuit between the Golgi apparatus and the cell surface that in an epithelial context facilitates the apical sorting of proteins and lipids.


Assuntos
Polaridade Celular/fisiologia , Galectinas/metabolismo , Globosídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Animais , Cães , Células Epiteliais , Galectinas/genética , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde , Rim/citologia , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Interferência de RNA
19.
Proc Natl Acad Sci U S A ; 107(51): 22050-4, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21131568

RESUMO

The physical basis for protein partitioning into lipid rafts remains an outstanding question in membrane biology that has previously been addressed only through indirect techniques involving differential solubilization by nonionic detergents. We have used giant plasma membrane vesicles, a plasma membrane model system that phase separates to include an ordered phase enriching for raft constituents, to measure the partitioning of the transmembrane linker for activation of T cells (LAT). LAT enrichment in the raft phase was dependent on palmitoylation at two juxtamembrane cysteines and could be enhanced by oligomerization. This palmitoylation requirement was also shown to regulate raft phase association for the majority of integral raft proteins. Because cysteine palmitoylation is the only lipid modification that has been shown to be reversibly regulated, our data suggest a role for palmitoylation as a dynamic raft targeting mechanism for transmembrane proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoilação/fisiologia , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Fosfoproteínas/metabolismo , Multimerização Proteica/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Detergentes/química , Microdomínios da Membrana/química , Microdomínios da Membrana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ratos
20.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478183

RESUMO

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Assuntos
Adenoma , Ácidos Graxos Dessaturases , Humanos , Camundongos , Animais , Ácidos Graxos Dessaturases/genética , Lipidômica , Ácidos Graxos Insaturados/metabolismo , Glândulas Suprarrenais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA