Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(1): 42-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563455

RESUMO

Protein lipidation, which regulates numerous biological pathways and plays crucial roles in the pharmaceutical industry, is not encoded by the genetic code but synthesized post-translationally. In the present study, we report a computational approach for designing lipidation mimics that fully recapitulate the biochemical properties of natural lipidation in membrane association and albumin binding. Furthermore, we establish an engineered system for co-translational incorporation of these lipidation mimics into virtually any desired position of proteins in Escherichia coli and mammalian cells. We demonstrate the utility of these length-tunable lipidation mimics in diverse applications, including improving the half-life and activity of therapeutic proteins in living mice, anchoring functional proteins to membrane by substituting natural lipidation, functionally characterizing proteins carrying different lengths of lipidation and determining the plasma membrane-binding capacity of a given compound. Our strategy enables gain-of-function studies of lipidation in hundreds of proteins and facilitates the creation of superior therapeutic candidates.


Assuntos
Mamíferos , Proteínas , Camundongos , Animais , Proteínas/química , Membrana Celular/metabolismo
2.
J Cell Mol Med ; 28(18): e70079, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39300613

RESUMO

This study aimed to identify feature genes and explore the molecular mechanisms of keratoconus (KC). We downloaded data files from NCBI GEO public database. The Limma package was used for differential expression analysis of gene profiles. Lasso regression was used to identify the feature genes. The CIBERSORT algorithm was used to infer the proportion of immune-infiltrating cells and analyse the correlation between gene expression levels and immune cells. Related transcription factors and miRNAs of key genes were predicted using the Cistrome DB and Mircode databases. Analysis of expression differences in disease genes was based on the GeneCards database. The CMap was used to analyse targeted therapeutic drugs. IHC was performed to verify the expression levels of ATOH7 and MYRF in corneas. Exactly 593 upregulated and 473 downregulated genes were identified. Lasso regression analysis identified ATOH7, DBNDD1, RNF217-AS1, ARL11, MYRF and SNORA74B as feature genes for KC. All key genes were correlated with immune infiltration and the levels of activated memory CD4+ T cells and plasma cells were significantly increased. miRNA, IRF and STAT families were correlated to feature genes. The expression levels of key genes were significantly correlated to KC-related genes. Entinostat, ochratoxin-a, diphencyprone and GSK-3-inhibitor-II were predicted as potential KC medications. The expression of MYRF was significantly higher in the KC samples, contrary to the expression of ATOH7. KC is related to both immune infiltration and genetic factors. MYRF and ATOH7 were newly identified and verified feature genes of KC.


Assuntos
Ceratocone , Ceratocone/genética , Ceratocone/metabolismo , Humanos , MicroRNAs/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Bases de Dados Genéticas , Transcriptoma/genética , Redes Reguladoras de Genes , Biologia Computacional/métodos
3.
Plant Biotechnol J ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276323

RESUMO

Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.

4.
Exp Eye Res ; 241: 109832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369232

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is the leading cause of endothelial keratoplasty without efficacious drug treatment. Recent studies have emphasized the involvement of epigenetic regulation in FECD development. Long non-coding RNAs (lncRNAs) are recognized as crucial epigenetic regulators in diverse cellular processes and ocular diseases. In this study, we revealed the expression patterns of lncRNAs using high-throughput sequencing technology in FECD mouse model, and identified 979 significantly dysregulated lncRNAs. By comparing the data from FECD human cell model, we obtained a series of homologous lncRNAs with similar expression patterns, and revealed that these homologous lncRNAs were enriched in FECD related biological functions, with apoptosis (mmu04210) showing the highest enrichment score. In addition, we investigated the role of lncRNA zinc finger antisense 1 (ZFAS1) in apoptotic process. This study would broaden our understanding of epigenetic regulation in FECD development, and provide potential anti-apoptotic targets for FECD therapy.


Assuntos
Distrofia Endotelial de Fuchs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Endotélio Corneano/metabolismo , Epigênese Genética , Distrofia Endotelial de Fuchs/genética , Distrofia Endotelial de Fuchs/metabolismo , RNA Longo não Codificante/genética , Zinco/metabolismo
5.
Mol Breed ; 44(2): 12, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38313680

RESUMO

Tiller number greatly contributes to grain yield in wheat. Using ethylmethanesulfonate mutagenesis, we previously discovered the oligo-tillering mutant ot1. The tiller number was significantly lower in ot1 than in the corresponding wild type from the early tillering stage until the heading stage. Compared to the wild type, the thousand-grain weight and grain length were increased by 15.41% and 31.44%, respectively, whereas the plant height and spike length were decreased by 26.13% and 37.25%, respectively. Transcriptomic analysis was conducted at the regreening and jointing stages to identify differential expressed genes (DEGs). Functional enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases showed differential expression of genes associated with ADP binding, transmembrane transport, and transcriptional regulation during tiller development. Differences in tiller number in ot1 led to the upregulation of genes in the strigolactone (SL) and abscisic acid (ABA) pathways. Specifically, the SL biosynthesis genes DWARF (D27), D17, D10, and MORE AXILLARY GROWTH 1 (MAX1) were upregulated by 3.37- to 8.23-fold; the SL signal transduction genes D14 and D53 were upregulated by 1.81- and 1.32-fold, respectively; the ABA biosynthesis genes 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) and NCED5 were upregulated by 1.66- and 3.4-fold, respectively; and SNF1-REGULATED PROTEIN KINASE2 (SnRK2) and PROTEIN PHOSPHATASE 2C (PP2C) genes were upregulated by 1.30- to 4.79-fold. This suggested that the tiller number reduction in ot1 was due to alterations in plant hormone pathways. Genes known to promote tillering growth were upregulated, whereas those known to inhibit tillering growth were downregulated. For example, PIN-FORMED 9 (PIN9), which promotes tiller development, was upregulated by 8.23-fold in ot1; Ideal Plant Architecture 1 (IPA1), which inhibits tiller development, was downregulated by 1.74-fold. There were no significant differences in the expression levels of TILLER NUMBER 1 (TN1) or TEOSINTE BRANCHED 1 (TB1), indicating that the tiller reduction in ot1 was not controlled by known genes. Our findings provide valuable data for subsequent research into the genetic bases and regulatory mechanisms of wheat tillering. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01450-3.

6.
BMC Endocr Disord ; 24(1): 45, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622616

RESUMO

BACKGROUND: Headache is a common occurrence after endoscopic endonasal surgery (EES) for pituitary adenomas and significantly impacts the quality of life of patients. This study aims to investigate the effectiveness of nasal irrigation in relieving postoperative headache after EES. METHODS: A retrospective analysis was conducted on a cohort of 101 patients (Cohort I) who underwent EES for pituitary adenomas to explore the risk factors associated with postoperative headache. Another cohort of 72 patients (Cohort II) who received adjuvant nasal irrigation following surgery was enrolled for further analysis. The Headache Impact Test (HIT-6) was used to score the severity of headache, and patients with a HIT score > 55 were classified as having headache. RESULTS: In Cohort I, 21.78% of patients experienced headache one month after EES, which decreased to 5.94% at the three-month follow-up. Multivariate analysis revealed that postoperative nasal sinusitis (OR = 3.88, 95%CI 1.16-13.03, p = 0.028) and Hardy's grade C-D (OR = 10.53, 95%CI 1.02-109.19, p = 0.049) independently predicted the presence of postoperative headache at one month. At the three-month follow-up, patients with sinusitis had higher HIT-6 scores compared to those without sinusitis (44.43 ± 9.78 vs. 39.72 ± 5.25, p = 0.017). In Cohort II, the incidence of sinusitis at three months was significantly lower than that in Cohort I (p = 0.028). Importantly, both the incidence of headache and HIT-6 scores in Cohort II were significantly lower than those in Cohort I at the one- and three-month follow-ups. CONCLUSIONS: Postoperative sinusitis is an independent risk factor for the development of headache following EES for pituitary adenomas. Prophylactic nasal irrigation helps relieve postoperative headache, possibly by preventing the occurrence of sinusitis.


Assuntos
Neoplasias Hipofisárias , Sinusite , Humanos , Neoplasias Hipofisárias/cirurgia , Estudos Retrospectivos , Qualidade de Vida , Resultado do Tratamento , Endoscopia/efeitos adversos , Cefaleia/etiologia , Cefaleia/prevenção & controle , Lavagem Nasal
7.
Clin Exp Pharmacol Physiol ; 51(10): e13921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39223829

RESUMO

Fuchs endothelial corneal dystrophy (FECD) is a leading cause of corneal endothelial degeneration resulting in impaired visual acuity. Excessive deposition of extracellular matrix (guttae) on Descemet's membrane (DM) is the hallmark of FECD. We sought to detect the guttae area rapidly using aniline blue (AB) staining in FECD mouse model. FECD mouse model was established via ultraviolet A (UVA) exposure. Masson's trichrome staining was utilized to stain the corneal sections. AB staining was utilized to stain both whole cornea tissues and stripped Descemet's membrane-endothelium complex (DMEC) flat mounts, while immunofluorescence staining of collagen I was employed to stain guttae areas. In Masson's trichrome staining, corneal collagen fibrils were stained blue with AB. The DMEC flat mounts were stained into relative dark blue areas and relative light blue areas using 2% AB staining. The areas of dark blue could almost overlap with collagen I-positive areas, and have an acellular centre and a moderately distinct boundary line with the surrounding corneal endothelial cells. In conclusion, AB staining is a rapid and effective method for the evaluation of the guttae areas in the FECD mouse model.


Assuntos
Compostos de Anilina , Modelos Animais de Doenças , Distrofia Endotelial de Fuchs , Animais , Camundongos , Distrofia Endotelial de Fuchs/patologia , Distrofia Endotelial de Fuchs/metabolismo , Coloração e Rotulagem/métodos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Lâmina Limitante Posterior/patologia , Lâmina Limitante Posterior/metabolismo , Camundongos Endogâmicos C57BL , Endotélio Corneano/patologia , Endotélio Corneano/metabolismo , Corantes
8.
BMC Plant Biol ; 23(1): 333, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349717

RESUMO

BACKGROUND: Plant height (PH) and spike compactness (SC) are important agronomic traits that affect yield improvement in wheat crops. The identification of the loci or genes responsible for these traits is thus of great importance for marker-assisted selection in wheat breeding. RESULTS: In this study, we used a recombinant inbred line (RIL) population with 139 lines derived from a cross between the mutant Rht8-2 and the local wheat variety NongDa5181 (ND5181) to construct a high-density genetic linkage map by applying the Wheat 40 K Panel. We identified seven stable QTLs for PH (three) and SC (four) in two environments using the RIL population, and found that Rht8-B1 is the causal gene of qPH2B.1 by further genetic mapping, gene cloning and gene editing analyses. Our results also showed that two natural variants from GC to TT in the coding region of Rht8-B1 resulted in an amino acid change from G (ND5181) to V (Rht8-2) at the 175th position, reducing PH by 3.6%~6.2% in the RIL population. Moreover, gene editing analysis suggested that the height of T2 generation in Rht8-B1 edited plants was reduced by 5.6%, and that the impact of Rht8-B1 on PH was significantly lower than Rht8-D1. Additionally, analysis of the distribution of Rht8-B1 in various wheat resources suggested that the Rht8-B1b allele has not been widely utilized in modern wheat breeding. CONCLUSIONS: The combination of Rht8-B1b with other favorable Rht genes might be an alternative approach for developing lodging-resistant crops. Our study provides important information for marker-assisted selection in wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas/genética
9.
BMC Plant Biol ; 23(1): 377, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528349

RESUMO

BACKGROUND: Induction of mutation through chemical mutagenesis is a novel approach for preparing diverse germplasm. Introduction of functional alleles in the starch biosynthetic genes help in the improvement of the quality and yield of cereals. RESULTS: In the present study, a set of 350 stable mutant lines were used to evaluate dynamic variation of the total starch contents. A megazyme kits were used for measuring the total starch content, resistant starch, amylose, and amylopectin content. Analysis of variance showed significant variation (p < 0.05) in starch content within the population. Furthermore, two high starch mutants (JE0173 and JE0218) and two low starch mutants (JE0089 and JE0418) were selected for studying different traits. A multiple comparison test showed that significant variation in all physiological and morphological traits, with respect to the parent variety (J411) in 2019-2020 and 2020-2021. The quantitative expression of starch metabolic genes revealed that eleven genes of JE0173 and twelve genes of JE0218 had consistent expression in high starch mutant lines. Similarly, in low starch mutant lines, eleven genes of JE0089 and thirteen genes of JE0418 had consistent expression in all stages of seed development. An additional two candidate genes showed over-expression (PHO1, PUL) in the high starch mutant lines, indicating that other starch metabolic genes may also contribute to the starch biosynthesis. The overexpression of SSII, SSIII and SBEI in JE0173 may be due to presence of missense mutations in these genes and SSI also showed overexpression which may be due to 3-primer_UTR variant. These mutations can affect the other starch related genes and help to increase the starch content in this mutant line (JE0173). CONCLUSIONS: This study screened a large scale of mutant population and identified mutants, could provide useful genetic resources for the study of starch biosynthesis and genetic improvement of wheat in the future. Further study will help to understand new genes which are responsible for the fluctuation of total starch.


Assuntos
Amido , Triticum , Amido/metabolismo , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amilose/metabolismo , Amilopectina/genética , Amilopectina/metabolismo
10.
Plant Biotechnol J ; 21(10): 2047-2056, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37401008

RESUMO

Hexaploid wheat (Triticum aestivum), a major staple crop, has a remarkably large genome of ~14.4 Gb (containing 106 913 high-confidence [HC] and 159 840 low-confidence [LC] genes in the Chinese Spring v2.1 reference genome), which poses a major challenge for functional genomics studies. To overcome this hurdle, we performed whole-exome sequencing to generate a nearly saturated wheat mutant database containing 18 025 209 mutations induced by ethyl methanesulfonate (EMS), carbon (C)-ion beams, or γ-ray mutagenesis. This database contains an average of 47.1 mutations per kb in each gene-coding sequence: the potential functional mutations were predicted to cover 96.7% of HC genes and 70.5% of LC genes. Comparative analysis of mutations induced by EMS, γ-rays, or C-ion beam irradiation revealed that γ-ray and C-ion beam mutagenesis induced a more diverse array of variations than EMS, including large-fragment deletions, small insertions/deletions, and various non-synonymous single nucleotide polymorphisms. As a test case, we combined mutation analysis with phenotypic screening and rapidly mapped the candidate gene responsible for the phenotype of a yellow-green leaf mutant to a 2.8-Mb chromosomal region. Furthermore, a proof-of-concept reverse genetics study revealed that mutations in gibberellic acid biosynthesis and signalling genes could be associated with negative impacts on plant height. Finally, we built a publically available database of these mutations with the corresponding germplasm (seed stock) repository to facilitate advanced functional genomics studies in wheat for the broad plant research community.


Assuntos
Genômica , Triticum , Triticum/genética , Sequenciamento do Exoma , Mutação/genética , Mutagênese , Metanossulfonato de Etila/farmacologia , Genoma de Planta/genética
11.
Theor Appl Genet ; 136(6): 140, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243757

RESUMO

KEY MESSAGE: A minor-effect QTL, Qhd.2AS, that affects heading date in wheat was mapped to a genomic interval of 1.70-Mb on 2AS, and gene analysis indicated that the C2H2-type zinc finger protein gene TraesCS2A02G181200 is the best candidate for Qhd.2AS. Heading date (HD) is a complex quantitative trait that determines the regional adaptability of cereal crops, and identifying the underlying genetic elements with minor effects on HD is important for improving wheat production in diverse environments. In this study, a minor QTL for HD that we named Qhd.2AS was detected on the short arm of chromosome 2A by Bulked Segregant Analysis and validated in a recombinant inbred population. Using a segregating population of 4894 individuals, Qhd.2AS was further delimited to an interval of 0.41 cM, corresponding to a genomic region spanning 1.70 Mb (from 138.87 to 140.57 Mb) that contains 16 high-confidence genes based on IWGSC RefSeq v1.0. Analyses of sequence variations and gene transcription indicated that TraesCS2A02G181200, which encodes a C2H2-type zinc finger protein, is the best candidate gene for Qhd.2AS that influences HD. Screening a TILLING mutant library identified two mutants with premature stop codons in TraesCS2A02G181200, both of which exhibited a delay in HD of 2-4 days. Additionally, variations in its putative regulatory sites were widely present in natural accession, and we also identified the allele which was positively selected during wheat breeding. Epistatic analyses indicated that Qhd.2AS-mediated HD variation is independent of VRN-B1 and environmental factors. Phenotypic investigation of homozygous recombinant inbred lines (RILs) and F2:3 families showed that Qhd.2AS has no negative effect on yield-related traits. These results provide important cues for refining HD and therefore improving yield in wheat breeding programs and will deepen our understanding of the genetic regulation of HD in cereal plants.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Mapeamento Cromossômico/métodos , Triticum/genética , Melhoramento Vegetal , Fenótipo , Dedos de Zinco/genética
12.
Int J Mol Sci ; 24(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36902439

RESUMO

Heading date (HD) is an important trait for wide adaptability and yield stability in wheat. The Vernalization 1 (VRN1) gene is a key regulatory factor controlling HD in wheat. The identification of allelic variations in VRN1 is crucial for wheat improvement as climate change becomes more of a threat to agriculture. In this study, we identified an EMS-induced late-heading wheat mutant je0155 and crossed it with wide-type (WT) Jing411 to construct an F2 population of 344 individuals. Through Bulk Segregant Analysis (BSA) of early and late-heading plants, we identified a Quantitative Trait Locus (QTL) for HD on chromosome 5A. Further genetic linkage analysis limited the QTL to a physical region of 0.8 Mb. Cloning and sequencing revealed three copies of VRN-A1 in the WT and mutant lines; one copy contained a missense mutation of C changed to T in exon 4 and another copy contained a mutation in intron 5. Genotype and phenotype analysis of the segregation population validated that the mutations in VRN-A1 contributed to the late HD phenotype in the mutant. Expression analysis of C- or T-type alleles in exon 4 of the WT and mutant lines indicated that this mutation led to lower expression of VRN-A1, which resulted in the late-heading of je0155. This study provides valuable information for the genetic regulation of HD and many important resources for HD refinement in wheat breeding programs.


Assuntos
Mutação de Sentido Incorreto , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Alelos
13.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614025

RESUMO

Plant height is a key agronomic trait that is closely to the plant morphology and lodging resistance in wheat. However, at present, the few dwarf genes widely used in wheat breeding have narrowed wheat genetic diversity. In this study, we selected a semi-dwarf wheat mutant dwarf33 that exhibits decreased plant height with little serious negative impact on other agronomic traits. Genetic analysis and mutant gene mapping indicated that dwarf33 contains a new recessive semi-dwarf gene Rht-SN33d, which was mapped into ~1.3 Mb interval on the 3DL chromosome. The gibberellin metabolism-related gene TraesCS3D02G542800, which encodes gibberellin 2-beta-dioxygenase, is considered a potential candidate gene of Rht-SN33d. Rht-SN33d reduced plant height by approximately 22.4% in mutant dwarf33. Further study revealed that shorter stem cell length may be the main factor causing plant height decrease. In addition, the coleoptile length of dwarf33 was just 9.3% shorter than that of wild-type Shaannong33. These results will help to expand our understanding of new mechanisms of wheat height regulation, and obtain new germplasm for wheat improvement.


Assuntos
Giberelinas , Triticum , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo
14.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142653

RESUMO

Several health benefits are obtained from resistant starch, also known as healthy starch. Enhancing resistant starch with genetic modification has huge commercial importance. The variation of resistant starch content is narrow in wheat, in relation to which limited improvement has been attained. Hence, there is a need to produce a wheat population that has a wide range of variations in resistant starch content. In the present study, stable mutants were screened that showed significant variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch content, digestible starch, and total starch. The analysis of variance showed a significant difference in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of key genes regulating resistant starch biosynthesis (GBSSI and their isoforms) in the high resistant starch mutant lines, in comparison to the parent variety (J411). The expression of SBEs genes was higher in the low resistant starch mutants. The other three candidate genes showed overexpression (BMY, Pho1, Pho2) and four had reduced (SSIII, SBEI, SBEIII, ISA3) expression in high resistant starch mutants. The overexpression of AMY and ISA1 in the high resistant starch mutant line JE0146 may be due to missense mutations in these genes. Similarly, there was a stop_gained mutation for PHO2; it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing genes in four different mutants (low and high resistant starch mutants) shows that in addition to the important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute to the biosynthesis of resistant starch. There is a need to do further study about these new genes, which are responsible for the fluctuation of resistant starch in the mutants.


Assuntos
Amido , Triticum , Regulação da Expressão Gênica de Plantas , Fosforilases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido Resistente , Amido/metabolismo , Triticum/genética , Triticum/metabolismo
15.
J Sci Food Agric ; 102(6): 2413-2423, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34628644

RESUMO

BACKGROUND: Fructooligosaccharides (FOS) have been identified as important prebiotics. Previous studies have found that they can significantly promote the proliferation of Bifidobacterium pseudolongum in the mouse intestine. However, it is still unclear which other bacteria in the mouse intestine can utilize FOS, and the differences in the ability to utilize FOS. In this study, the bacteria capable of utilizing FOS were isolated from mice feces and their ability to utilize FOS was compared. Draft genome sequencing was also applied to explain the differences in FOS utilization at the gene levels. RESULTS: A total of 15 species were isolated from mouse feces and 13 species were able to utilize fructofuranosylnystose (GF2). Eleven species could utilize nistose (GF3), but not Enterococcus hirae and Lactobacillus reuteri. In contrast, 1-kestose (GF4) was hardly utilized. The enzyme activity determination and draft genome sequencing-based analyses revealed that all isolated species used the phosphotransferase system or permease system to transport FOS into the cells before hydrolysis by ß-fructofuranosidase. Although ß-fructofuranosidase exists in all strains, there are big differences in the corresponding coding genes between bifidobacteria and non-bifidobacteria. CONCLUSION: Compared with the other isolates, Bifidobacterium species exhibited higher enzyme activity and shorter generation time, leading to a stronger ability to utilize FOS. © 2021 Society of Chemical Industry.


Assuntos
Bifidobacterium , Oligossacarídeos , Animais , Bactérias , Bifidobacterium/genética , Intestinos/microbiologia , Camundongos , Prebióticos
16.
J Sci Food Agric ; 102(12): 5301-5311, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35312198

RESUMO

BACKGROUND: Fructooligosaccharides (FOS) are a kind of prebiotic. Previous studies concerning the effect of FOS on intestinal microbiota have focused on Bifidobacterium and Lactobacillus. However, the presence of other FOS-utilizing bacteria makes it necessary to investigate the quantitative changes in these bacterial species in the intestine after FOS intake. In this study, the composition of cecal and fecal microbiota was analyzed using MiSeq sequencing, and the abundance of FOS-utilizing bacteria was detected using quantitative polymerase chain reaction after the oral administration of FOS. RESULTS: Species-specific primers for FOS-utilizing bacteria were designed with superior amplification efficiency for quantification. After FOS intervention, the relative abundance of Bifidobacterium pseudolongum in feces increased to 17.37% and the abundance reached 2.28 × 1010 CFU g-1 . The abundance of Bifidobacterium longum and Bifidobacterium breve did not change significantly. Whereas the abundance of Ligilactobacillus murinus decreased, that of Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, and Lacticaseibacillus rhamnosus remained at approximately 104 CFU g-1 . CONCLUSION: Species-specific primers for FOS-utilizing bacteria were successfully developed, and we confirmed that FOS significantly increased the relative abundance and the abundance of B. pseudolongum in mice, while decreasing the proportion of Lactobacillus. The detection of these species using 16S ribosomal DNA sequencing and quantitative polymerase chain reaction showed the same results. Further investigations are needed to reveal the response of the intestinal microbiota to different FOS compositions. These techniques will contribute to future studies about the composition and dynamics of the intestinal microflora. © 2022 Society of Chemical Industry.


Assuntos
Microbiota , Oligossacarídeos , Animais , Bactérias , Primers do DNA , Fezes/microbiologia , Camundongos , Oligossacarídeos/farmacologia , RNA Ribossômico 16S/genética
17.
Chemistry ; 27(41): 10657-10665, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33876453

RESUMO

Increasing the metal loading and downsizing the metal particle size are two effective ways to boost the electrochemical performance of catalysts. However, it is difficult to simultaneously increase the metal loading and reduce the particle size since isolated individual atoms are easy to aggregate into nanoparticles when increasing the metal loading. To tackle this contradiction, we report a bottom-up ligand-mediated strategy to facilely prepare ultrafine CoOx nanoclusters anchored on a Co-N-containing carbon matrix (CoOx @Co-NC). The co-exist of N and O atoms prevent Co atoms agglomerating into large particles and allowing the formation of ultrafine dispersed Co species with large Co loading (up to 20 wt.%). Since the relationship between ultrasmall size and large metal loading is well balanced, the CoOx nanoclusters have no inhibitory effect, but facilitate the catalytic performance of Co-N4 sites during OER process. Consequently, due to the synergistic effect of ultrafine CoOx nanoclusters and Co-N4 macrocycles, the as-synthesized CoOx @Co-NC exhibit promising OER activity (η10 =370 mV, Tafel plot=40 mV/dec), bettering than that of benchmark RuO2 (η10 =411 mV, Tafel plot=72 mV/dec). This ligand-mediated strategy to synthesize carbonaceous materials containing dual active centers with large metal loading is promising for developing active and stable catalysts for electrocatalytic applications.

18.
Exp Eye Res ; 213: 108820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34728181

RESUMO

Human corneal endothelial cells (CECs) have limited ability to regenerate in vivo. Oxidative stress has been proposed as one potential reason. Understanding the mechanism of oxidative stress-induced CEC dysfunction might provide novel targets for improving CEC regenerative capacity, and help develop non-surgical therapeutic strategies for CEC dysfunction. Long non-coding RNAs (lncRNAs) are non-coding transcripts with multiple biological functions. The roles of lncRNAs in ocular cells under oxidative stress have been widely studied, such as lens epithelial cells, trabecular meshwork cells, and retinal ganglion cells. In the current study, we established oxidative stress-induced CEC dysfunction model in vitro. By RNA sequencing technology, we identified 824 differentially expressed lncRNAs in CEC dysfunction group, including 667 upregulated lncRNAs and 157 downregulated lncRNAs. We finally demonstrated that CEC functions under oxidative stress, including cellular proliferation, apoptosis, and anti-oxidative stress ability, could be regulated by different lncRNAs, including lncRNA-Z93241.1, lncRNA-XLOC_000818, and lncRNA-AC007952.4. Targeting these lncRNAs might be useful to further elucidate the pathology of CEC dysfunction and develop novel therapeutic strategy.


Assuntos
Doenças da Córnea/metabolismo , Endotélio Corneano/metabolismo , Regulação da Expressão Gênica/fisiologia , Estresse Oxidativo , RNA Longo não Codificante/genética , Apoptose , Linhagem Celular , Proliferação de Células/fisiologia , Biologia Computacional , Doenças da Córnea/patologia , Endotélio Corneano/patologia , Epigenômica , Fluoresceínas/metabolismo , Perfilação da Expressão Gênica , Marcação de Genes , Humanos , Peróxido de Hidrogênio/toxicidade , Oxidantes/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Sincalida/metabolismo
19.
BMC Endocr Disord ; 21(1): 225, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774043

RESUMO

BACKGROUND: Prolactinoma is the major cause of hyperprolactinemia, and dopamine agonists (DAs) are generally the first-line treatment for them. Several studies have reviewed the recurrent rate of hyperprolactinemia after DAs withdrawal. However, few of them have concerned the recurrence risk of prolactinoma following the withdrawal of DAs. METHODS: Three medical databases, PubMed, EMBASE and Cochrane library, were retrieved up to February, 14, 2021 to identify studies related to recurrence of prolactinoma and withdrawal of DAs. Statistical analyses including meta-analysis, sensitivity analysis, meta-regression, funnel plot and Egger test were performed through software R. RESULTS: A total of 3225 studies were retrieved from the three data bases, and 13 studies consisted of 616 patients and 19 arms were finally included in this systematic analysis. There was no significant heterogeneity among the included studies, and fixed effect model was thus used. The pooled recurrence proportion of prolactinoma after withdrawal of DA was 2% with a 95% confidence interval (CI) of 1-3%. CONCLUSION: Our study showed a very low recurrent rate of prolactinomas after DAs withdrawal. Much more prospective studies with larger cases and longer follow-up period are encouraged to confirm our finding. TRIAL REGISTRATION: Registration number CRD42021245888 (PROSPERO).


Assuntos
Desprescrições , Agonistas de Dopamina/uso terapêutico , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Hipofisárias/tratamento farmacológico , Prolactinoma/tratamento farmacológico , Bromocriptina/uso terapêutico , Cabergolina/uso terapêutico , Humanos
20.
J Sci Food Agric ; 101(4): 1609-1617, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32875593

RESUMO

BACKGROUND: Astaxanthin ester (Asta-E) is used as functional nutraceuticals in many food products. Unfortunately, Asta-E utilization is currently limited owing to its chemical instability and low bioavailability. The purpose of this study is to investigate the promotion effect of oil matrixes on the stability, antioxidant activity, bioaccessibility and bioavailability of Asta-E. RESULTS: The results showed that the stability of Asta-E in six oil matrixes was improved. Based on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity experiment, the antioxidant activity of Asta-E was positively correlated with the degree of unsaturation of the oil matrixes, but not with the side chain length. The in vitro gastrointestinal tract (GIT) simulation model and in vivo experiment using mice were also employed to investigate the digestion and absorption characteristics of Asta-E in various oil matrixes. The results demonstrated that the bioaccessibility and bioavailability of Asta-E increased with the increase of fatty acid chain length of oil matrixes (triglyceride oleate > triglyceride caprylate > triglyceride butyrate), as well as with the decrease of unsaturation degree (olive oil > corn oil > fish oil). CONCLUSION: Monounsaturated fatty acids (MUFA) and long-chain triglyceride (LCT) in an oil matrix were the factors that could efficiently improve the bioavailability of Asta-E. Moreover, the size of the mixed micelles of Asta-E during digestion was the main factor influencing the bioaccessibility of Asta-E. This study provides references for the design of suitable oil matrixes for Asta-E. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Portadores de Fármacos/química , Ésteres/química , Óleos/química , Animais , Antioxidantes/metabolismo , Disponibilidade Biológica , Digestão , Estabilidade de Medicamentos , Ésteres/metabolismo , Trato Gastrointestinal/metabolismo , Camundongos , Xantofilas/química , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA