Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 170(6): 1247-1257.e12, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844695

RESUMO

The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2 (MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2 forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1 state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexos Multienzimáticos/química , Microscopia Crioeletrônica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/isolamento & purificação , Complexo II de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo
2.
Cell ; 167(6): 1598-1609.e10, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912063

RESUMO

The mammalian respiratory chain complexes assemble into supercomplexes (SCs) and reside in the inner mitochondrial membrane to transfer electrons and establish the proton gradient for complex V to synthesize ATP. The precise arrangement of SCs is largely unknown. Here, we report a 4.0-Å cryo-electron microscopy (cryo-EM) structure of the major SC in porcine heart, the 1.7-MDa SCI1III2IV1. The complex III (CIII) dimer and complex IV (CIV) bind at the same side of the L-shaped complex I (CI). Several accessory or supernumerary subunits of CI, such as NDUFA11, NDUFB4, NDUFB8, and NDUFB9, directly contribute to the oligomerization of CI, CIII, and CIV. COX7C and COX7A of CIV attach CIV to the concave surface formed by CIII and the distal end of membrane arm of CI. The structure suggests a possible mechanism by which electrons are transferred from NADH to cytochrome c and provides a platform for future functional dissection of respiration.


Assuntos
Transporte de Elétrons , Mitocôndrias Cardíacas/química , Membranas Mitocondriais/química , Animais , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multienzimáticos/química , Bombas de Próton/química , Sus scrofa
3.
Nature ; 537(7622): 639-43, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27654917

RESUMO

The respiratory chain complexes I, III and IV (CI, CIII and CIV) are present in the bacterial membrane or the inner mitochondrial membrane and have a role of transferring electrons and establishing the proton gradient for ATP synthesis by complex V. The respiratory chain complexes can assemble into supercomplexes (SCs), but their precise arrangement is unknown. Here we report a 5.4 Å cryo-electron microscopy structure of the major 1.7 megadalton SCI1III2IV1 respirasome purified from porcine heart. The CIII dimer and CIV bind at the same side of the L-shaped CI, with their transmembrane domains essentially aligned to form a transmembrane disk. Compared to free CI, the CI in the respirasome is more compact because of interactions with CIII and CIV. The NDUFA11 and NDUFB9 supernumerary subunits of CI contribute to the oligomerization of CI and CIII. The structure of the respirasome provides information on the precise arrangements of the respiratory chain complexes in mitochondria.


Assuntos
Respiração Celular , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias/química , Animais , Sítios de Ligação , Transporte de Elétrons , Complexo I de Transporte de Elétrons/isolamento & purificação , Mitocôndrias/ultraestrutura , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Suínos
4.
New Phytol ; 221(2): 1060-1073, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30204242

RESUMO

A common assumption in comparative genomics is that orthologous genes are functionally more similar than paralogous genes. However, the validity of this assumption needs to be assessed using robust experimental data. We conducted tissue-specific gene expression and protein function analyses of orthologous groups within the glutathione S-transferase (GST) gene family in three closely related Populus species: Populus trichocarpa, Populus euphratica and Populus yatungensis. This study identified 21 GST orthologous groups in the three Populus species. Although the sequences of the GST orthologous groups were highly conserved, the divergence in enzymatic functions was prevalent. Through site-directed mutagenesis of orthologous proteins, this study revealed that nonsynonymous substitutions at key amino acid sites played an important role in the divergence of enzymatic functions. In particular, a single amino acid mutation (Arg39→Trp39) contributed to P. euphratica PeGSTU30 possessing high enzymatic activity via increasing the hydrophobicity of the active cavity. This study provided experimental evidence showing that orthologues belonging to the gene family have functional divergences. The nonsynonymous substitutions at a few amino acid sites resulted in functional divergence of the orthologous genes. Our findings provide new insights into the evolution of orthologous genes in closely related species.


Assuntos
Glutationa Transferase/metabolismo , Populus/enzimologia , Substituição de Aminoácidos , Glutationa Transferase/química , Glutationa Transferase/genética , Modelos Moleculares , Família Multigênica , Mutagênese Sítio-Dirigida , Mutação , Especificidade de Órgãos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética
5.
Phys Chem Chem Phys ; 21(33): 18105-18118, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31396604

RESUMO

With the emergence of drug-resistant Plasmodium falciparum, the treatment of malaria has become a significant challenge; therefore, the development of antimalarial drugs acting on new targets is extremely urgent. In Plasmodium falciparum, type II nicotinamide adenine dinucleotide (NADH) dehydrogenase (NDH-2) is responsible for catalyzing the transfer of two electrons from NADH to flavin adenine dinucleotide (FAD), which in turn transfers the electrons to coenzyme Q (CoQ). As an entry enzyme for oxidative phosphorylation, NDH-2 has become one of the popular targets for the development of new antimalarial drugs. In this study, reliable motion trajectories of the NDH-2 complex with its co-factors (NADH and FAD) and inhibitor, RYL-552, were obtained by comparative molecular dynamics simulations. The influence of cofactor binding on the global motion of NDH-2 was explored through conformational clustering, principal component analysis and free energy landscape. The molecular interactions of NDH-2 before and after its binding with the inhibitor RYL-552 were analyzed, and the key residues and important hydrogen bonds were also determined. The results show that the association of RYL-552 results in the weakening of intramolecular hydrogen bonds and large allosterism of NDH-2. There was a significant positive correlation between the angular change of the key pocket residues in the NADH-FAD-pockets that represents the global functional motion and the change in distance between NADH-C4 and FAD-N5 that represents the electron transfer efficiency. Finally, the possible non-competitive inhibitory mechanism of RYL-552 was proposed. Specifically, the association of inhibitors with NDH-2 significantly affects the global motion mode of NDH-2, leading to widening of the distance between NADH and FAD through cooperative motion induction; this reduces the electron transfer efficiency of the mitochondrial respiratory chain. The simulation results provide useful theoretical guidance for subsequent antimalarial drug design based on the NDH-2 structure and the respiratory chain electron transfer mechanism.


Assuntos
Antimaláricos/química , Cetonas/química , NADH Desidrogenase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Quinolinas/química , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , NAD/química , NADH Desidrogenase/química , Oxirredução , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
6.
Int J Mol Sci ; 19(7)2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29986511

RESUMO

The anti-PD-L1 monoclonal antibody (mAb) targeting PD-1/PD-L1 immune checkpoint has achieved outstanding results in clinical application and has become one of the most popular anti-cancer drugs. The mechanism of molecular recognition and inhibition of PD-L1 mAbs is not yet clear, which hinders the subsequent antibody design and modification. In this work, the trajectories of PD-1/PD-L1 and nanobody/PD-L1 complexes were obtained via comparative molecular dynamics simulations. Then, a series of physicochemical parameters including hydrogen bond, dihedral angle distribution, pKa value and binding free energy, and so forth, were all comparatively analyzed to investigate the recognition difference between PD-L1 and PD-1 and nanobody. Both LR113 (the amino acid residues in PD-L1 are represented by the lower left sign of L) and LR125 residues of PD-L1 undergo significant conformational change after association with mAbs, which dominates a strong electrostatic interaction. Solvation effect analysis revealed that solvent-water enhanced molecular recognition between PD-L1 and nanobody. By combining the analyses of the time-dependent root mean squared fluctuation (RMSF), free energy landscape, clustering and energy decomposition, the potential inhibition mechanism was proposed that the nanobody competitively and specifically bound to the ß-sheet groups of PD-L1, reduced the PD-L1's flexibility and finally blocked the formation of PD-1/PD-L1 complex. Based on the simulation results, site-directed mutagenesis of ND99 (the amino acid residues in Nano are displayed by the lower left sign of N) and NQ116 in the nanobody may be beneficial for improving antibody activity. This work offers some structural guidance for the design and modification of anticancer mAbs based on the structure of the PD-1/PD-L1 complex.


Assuntos
Antígeno B7-H1/química , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos de Domínio Único/farmacologia , Antígeno B7-H1/genética , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Receptor de Morte Celular Programada 1/química , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Anticorpos de Domínio Único/química
7.
J Biol Chem ; 288(30): 22058-66, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23760267

RESUMO

In the nematode Caenorhabditis elegans, fem-1, fem-2, and fem-3 play crucial roles in male sexual development. Among these three genes, fem-2 encodes a PP2C (serine/threonine phosphatase type 2C)-like protein, whose activity promotes the development of masculinity. Different from the canonical PP2Cs, FEM-2 consists of an additional N-terminal domain (NTD) apart from its C-terminal catalytic domain. Interestingly, genetic studies have indicated indispensable roles for both of these two domains of FEM-2 in promoting male development, but the underlying mechanism remains unknown. In the present study, we solved the crystal structure of full-length FEM-2, which revealed a novel structural fold formed by its NTD. Structural and functional analyses demonstrated that the NTD did not directly regulate the in vitro dephosphorylation activity of FEM-2, but instead functioned as a scaffold domain in the assembly of the FEM-1/2/3 complex, the executioner in the final step of the sex determination pathway. Biochemical studies further identified the regions in the NTD involved in FEM-1 and FEM-3 interactions. Our results not only identified a novel fold formed by the extra domain of a noncanonical PP2C enzyme, but also provided important insights into the molecular mechanism of how the NTD works in mediating the sex-determining role of FEM-1/2/3 complex.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Fosfoproteínas Fosfatases/genética , Processos de Determinação Sexual/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Western Blotting , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 2): 256-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23385461

RESUMO

Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Dipeptídeos/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/fisiologia , Proteínas de Membrana Transportadoras/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Dipeptídeos/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Níquel/química , Níquel/metabolismo , Níquel/fisiologia , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato/fisiologia , Thermoanaerobacter/química , Thermoanaerobacter/metabolismo , Thermoanaerobacter/fisiologia
9.
Nat Struct Mol Biol ; 29(2): 172-182, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145322

RESUMO

Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Complexo I de Transporte de Elétrons/ultraestrutura , Mitocôndrias Cardíacas/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Sus scrofa , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
10.
Protein Cell ; 11(5): 318-338, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31919741

RESUMO

Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.


Assuntos
Respiração Celular , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Animais , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Humanos , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Fosforilação Oxidativa , Prótons
11.
Cell Discov ; 6: 67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083003

RESUMO

The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for mitochondrial precursor proteins synthesized on cytosolic ribosomes. Here we report the single-particle cryo-electron microscopy (cryo-EM) structure of the dimeric human TOM core complex (TOM-CC). Two Tom40 ß-barrel proteins, connected by two Tom22 receptor subunits and one phospholipid, form the protein-conducting channels. The small Tom proteins Tom5, Tom6, and Tom7 surround the channel and have notable configurations. The distinct electrostatic features of the complex, including the pronounced negative interior and the positive regions at the periphery and center of the dimer on the intermembrane space (IMS) side, provide insight into the preprotein translocation mechanism. Further, two dimeric TOM complexes may associate to form tetramer in the shape of a parallelogram, offering a potential explanation into the unusual structural features of Tom subunits and a new perspective of viewing the import of mitochondrial proteins.

12.
Science ; 364(6445): 1068-1075, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31197009

RESUMO

The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo-electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/química , Proteínas/química , Animais , Microscopia Crioeletrônica , ATPases Mitocondriais Próton-Translocadoras/isolamento & purificação , Conformação Proteica , Multimerização Proteica , Suínos , Proteína Inibidora de ATPase
13.
Cell Res ; 28(10): 1026-1034, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030519

RESUMO

Respiration is one of the most basic features of living organisms, and the electron transport chain complexes are probably the most complicated protein system in mitochondria. Complex-IV is the terminal enzyme of the electron transport chain, existing either as randomly scattered complexes or as a component of supercomplexes. NDUFA4 was previously assumed as a subunit of complex-I, but recent biochemical data suggested it may be a subunit of complex-IV. However, no structural evidence supporting this notion was available till now. Here we obtained the 3.3 Å resolution structure of complex-IV derived from the human supercomplex I1III2IV1 and assigned the NDUFA4 subunit into complex-IV. Intriguingly, NDUFA4 lies exactly at the dimeric interface observed in previously reported crystal structures of complex-IV homodimer which would preclude complex-IV dimerization. Combining previous structural and biochemical data shown by us and other groups, we propose that the intact complex-IV is a monomer containing 14 subunits.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Miocárdio/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Suínos
14.
Biomed J ; 41(1): 9-20, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29673555

RESUMO

Respiration is one of the most vital and basic features of living organisms. In mammals, respiration is accomplished by respiratory chain complexes located on the mitochondrial inner membrane. In the past century, scientists put tremendous efforts in understanding these complexes, but failed to solve the high resolution structure until recently. In 2016, three research groups reported the structure of respiratory chain supercomplex from different species, and fortunately the structure solved by our group has the highest resolution. In this review, we will compare the recently solved structures of respirasome, probe into the relationship between cristae shape and respiratory chain organization, and discuss the highly disputed issues afterwards. Besides, our group reported the first high resolution structure of respirasome and medium resolution structure of megacomplex from cultured human cells this year. Definitely, these supercomplex structures will provide precious information for conquering the mitochondrial malfunction diseases.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Transporte de Elétrons , Mitocôndrias/metabolismo , Animais , Complexo de Proteínas da Cadeia de Transporte de Elétrons/fisiologia , Humanos , Fosfolipídeos/química , Conformação Proteica
15.
Protein Cell ; 7(12): 854-865, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27743346

RESUMO

Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Animais , Transporte de Elétrons/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/história , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , História do Século XX , História do Século XXI , Humanos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
16.
Protein Cell ; 6(10): 757-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26349459

RESUMO

Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp(273-598) and Bbp(273-598)-Fg α(561-575) complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp(273-598) contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1' and D2' strands in N3 domain. The peptide mapped to the Fg α(561-575) bond to Bbp(273-598) on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a ß-strand G'' covering the ligand upon ligand binding. Bbp(Ala298-Gly301) in the N2 domain of the Bbp(273-598)-Fg α(561-575) complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, Bbp(Ser547-Gln561) in the N3 domain moved toward the binding groove to make contact directly with the peptide, while Bbp(Asp338-Gly355) and Bbp(Thr365-Tyr387) in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Staphylococcus aureus , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA