Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci China Life Sci ; 67(1): 67-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864083

RESUMO

Chronic pain often develops severe mood changes such as depression. However, how chronic pain leads to depression remains elusive and the mechanisms determining individuals' responses to depression are largely unexplored. Here we found that depression-like behaviors could only be observed in 67.9% of mice with chronic neuropathic pain, leaving 32.1% of mice with depression resilience. We determined that the spike discharges of the ventral tegmental area (VTA)-projecting lateral habenula (LHb) glutamatergic (Glu) neurons were sequentially increased in sham, resilient and susceptible mice, which consequently inhibited VTA dopaminergic (DA) neurons through a LHbGlu-VTAGABA-VTADA circuit. Furthermore, the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner. Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain. Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.


Assuntos
Dor Crônica , Habenula , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Habenula/metabolismo , Depressão , Ácido gama-Aminobutírico/metabolismo
2.
Mol Brain ; 16(1): 21, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750928

RESUMO

Electromagnetic pulse (EMP), a unique type of electromagnetic radiation, may induce diverse neuropsychiatric disorders, such as irritability, hyperkinesis, retardation of learning and memory. However, the underlying mechanism of EMP exposure on neuronal injury has not been elucidated. Here, we aimed to delineate the regulatory expression networks based on high-throughput sequencing data to explore the possible molecular mechanisms related to EMP-induced delirium-like neuropsychiatric disorder in rats. It's shown that EMP exposure induced anxiety, cognitive decline and short-term memory impairment. The expression profiles of the long noncoding RNAs (lncRNAs) and mRNAs, along with their biological function and regulatory network, were explored in rats after EMP exposure. We identified 41 differentially expressed lncRNAs (DELs) and 266 differentially expressed mRNAs (DEMs) between EMP and sham groups. Sixty-one co-expression relationships between 18 DELs and 56 DEMs were mostly associated with synapse- and metabolic-related pathways. We predicted 51 DEL-miRNA pairs and 290 miRNA-mRNA pairs using the miRanda database to constructed a DEL-miRNA-DEM network. LncRNA AABR07042999.1 and mRNA Tph2, Slc6a4, Dbh and Th were upregulated, and the contents of serotonin, dopamine and norepinephrine were increased in both PFC and HIP after EMP exposure. The current study provided a better understanding of the ceRNA network, which might reveal the pathological mechanism and provide more treatment options for the EMP-induced neurobehavioral disorder.


Assuntos
Delírio , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Fenômenos Eletromagnéticos , RNA Mensageiro/genética , Biologia Computacional
3.
Mol Brain ; 16(1): 70, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770900

RESUMO

Inflammatory pain is a commonly observed clinical symptom in a range of acute and chronic diseases. However, the mechanism of inflammatory pain is far from clear yet. Rab11a, a small molecule guanosine triphosphate enzyme, is reported to regulate orofacial inflammatory pain in our previous works. However, the mechanism of Rab11a's involvement in the regulation of inflammatory pain remains obscure. Here, we aim to elucidate the potential mechanisms through which Rab11a contributes to the development of inflammatory pain in the spinal level. It's shown that neurons, rather than glial cells, were the primary cell type expressing Rab11a in the spinal dorsal horn (SDH). After intra-plantar injection of CFA, both the number of Fos/Rab11a-immunopositive neurons and the expression of Rab11a were increased. Administration of Rab11a-shRNA into the SDH resulted in significantly analgesic effect in mice with CFA injection. Application of Rab11a-shRNA also reduced the NMDA receptor-mediated excitatory post-synaptic current (EPSC) and the spike number of neurons in lamina II of the SDH in mice with CFA injection, without affecting the presynaptic glutamate release and the postsynaptic AMPA receptor-mediated EPSC. Our results thus suggest that the enhanced expression of neuronal Rab11a may be important for the process of inflammatory pain in mice with CFA injection, which is likely mediated by Rab11a's potentiation of the competence of post-synaptic NMDAR and spiking of SDH neurons.


Assuntos
Dor , Medula Espinal , Animais , Camundongos , Adjuvante de Freund , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Neurônios/metabolismo , Dor/complicações , Dor/metabolismo , Células do Corno Posterior , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
4.
Neuron ; 110(12): 1993-2008.e6, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35443154

RESUMO

Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/fisiologia , Córtex Insular , Camundongos , Dor , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA