Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 60(32): 10239-10245, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34807133

RESUMO

Airy beam light-sheet illumination can extend the field of view (FOV) of light-sheet fluorescence microscopy due to the unique propagation properties of non-diffraction and self-acceleration. However, the side lobes create undesirable out-of-focus background, leading to poor axial resolution and low image contrast. Here, we propose an Airy complementary beam subtraction (ACBS) method to improve the axial resolution while keeping the extended FOV. By scanning the optimized designed complementary beam that has two main lobes (TML), the generated complementary light-sheet has almost identical intensity distribution to that of the planar Airy light-sheet except for the central lobe. Subtraction of the two images acquired by double exposure respectively using the planar Airy light-sheet and the planar TML light-sheet can effectively suppress the influence of the out-of-focus background. The axial resolution improves from ∼4µm to 1.2 µm. The imaging performance was demonstrated by imaging specimens of aspergillus conidiophores and GFP labeled mouse brain section. The results show that the ACBS method enables the Airy beam light-sheet fluorescence microscopy to obtain better imaging quality.


Assuntos
Microscopia de Fluorescência/métodos , Campos Visuais , Animais , Aspergillus/ultraestrutura , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Luz , Camundongos , Microscopia de Fluorescência/instrumentação , Esporos Fúngicos/ultraestrutura
2.
Front Aging Neurosci ; 14: 934844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959298

RESUMO

Background: The application of wearable sensor technology in an exercise intervention provides a new method for the standardization and accuracy of intervention. Considering that the deterioration of musculoskeletal conditions is of serious concern in patients with neurodegenerative diseases, it is worthwhile to clarify the effect of wearable sensor-based exercise on musculoskeletal disorders in such patients compared with traditional exercise. Methods: Five health science-related databases, including PubMed, Cochrane Library, Embase, Web of Science, and Ebsco Cumulative Index to Nursing and Allied Health, were systematically searched. The protocol number of the study is PROSPERO CRD42022319763. Randomized controlled trials (RCTs) that were published up to March 2022 and written in English were included. Balance was the primary outcome measure, comprising questionnaires on postural stability and computerized dynamic posturography. The secondary outcome measures are motor symptoms, mobility ability, functional gait abilities, fall-associated self-efficacy, and adverse events. Stata version 16.0 was used for statistical analysis, and the weighted mean difference (WMD) was selected as the effect size with a 95% confidence interval (CI). Results: Fifteen RCTs involving 488 participants with mean ages ranging from 58.6 to 81.6 years were included in this review, with 14 of them being pooled in a quantitative meta-analysis. Only five included studies showed a low risk of bias. The Berg balance scale (BBS) was used in nine studies, and the pooled data showed a significant improvement in the wearable sensor-based exercise group compared with the traditional exercise group after 3-12-week intervention (WMD = 1.43; 95% CI, 0.50 to 2.36, P = 0.003). A significant change in visual score was found both post-assessment and at 1-month follow-up assessment (WMD = 4.38; 95% CI, 1.69 to 7.07, P = 0.001; I2 = 0.0%). However, no significant differences were found between the two groups in the secondary outcome measures (all p > 0.05). No major adverse events were reported. Conclusion: The wearable sensor-based exercise had advantages in improving balance in patients with neurodegenerative diseases, while there was a lack of evidence in motor symptoms, mobility, and functional gait ability enhancement. Future studies are recommended to construct a comprehensive rehabilitation treatment system for the improvement in both postural control and quality of life. Systematic Review Registration: http://www.crd.york.ac.uk/prospero/, identifier CRD42022319763.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA