RESUMO
Tegumentary leishmaniasis is an important public health problem in several countries. The capacity of the Leishmania species, at the initial moments of the infection, to invade and survive inside the host cells involves the interaction of surface molecules that are crucial in determining the evolution of the disease. Using C57BL/6 wild-type and TLR-2(-/-) mice infected with L. (L.) amazonensis, we demonstrated that TLR-2(-/-) mice presented eosinophilic granuloma in the ear dermis, different from C57BL/6 wild-type mice that presented a cellular profile characterized mainly by mononuclear cell infiltrates, besides neutrophils and eosinophils, during the two first week of infection. When the parasite load was evaluated, we found that the absence of TLR-2 lead to a significant reduction of the infection in deficient mice, when compared with C57BL/6 mice which were more susceptible to the infection. Using TLR-2 deficient mice, it was possible to show that the absence of this receptor determined the reduction of the parasite load and the recruitment of inflammatory cells during the two first weeks after L. (L.) amazonensis infection.