RESUMO
Somatic mutations potentially play a role in plant evolution, but common expectations pertaining to plant somatic mutations remain insufficiently tested. Unlike in most animals, the plant germline is assumed to be set aside late in development, leading to the expectation that plants accumulate somatic mutations along growth. Therefore, several predictions were made on the fate of somatic mutations: mutations have generally low frequency in plant tissues; mutations at high frequency have a higher chance of intergenerational transmission; branching topology of the tree dictates mutation distribution; and exposure to UV (ultraviolet) radiation increases mutagenesis. To provide insights into mutation accumulation and transmission in plants, we produced two high-quality reference genomes and a unique dataset of 60 high-coverage whole-genome sequences of two tropical tree species, Dicorynia guianensis (Fabaceae) and Sextonia rubra (Lauraceae). We identified 15,066 de novo somatic mutations in D. guianensis and 3,208 in S. rubra, surprisingly almost all found at low frequency. We demonstrate that 1) low-frequency mutations can be transmitted to the next generation; 2) mutation phylogenies deviate from the branching topology of the tree; and 3) mutation rates and mutation spectra are not demonstrably affected by differences in UV exposure. Altogether, our results suggest far more complex links between plant growth, aging, UV exposure, and mutation rates than commonly thought.
Assuntos
Fabaceae , Lauraceae , Animais , Árvores/genética , Mutação , Taxa de MutaçãoRESUMO
In the last 20 years, several techniques have been developed for quantifying DNA methylation, the most studied epigenetic marks in eukaryotes, including the gold standard method, whole-genome bisulfite sequencing (WGBS). WGBS quantifies genome-wide DNA methylation but has several inconveniences rendering it less suitable for population-scale epigenetic studies. The high cost of deep sequencing and the large amounts of data generated prompted us to seek an alternative approach. Restricting studies to parts of the genome would be a satisfactory alternative had there not been a major limitation: the need to select upstream targets corresponding to differentially methylated regions as targets. Given the need to study large numbers of samples, we propose a strategy for investigating DNA methylation variation in natural populations, taking into account the structural complexity of genomes, their size, and their content in unique coding regions versus repeated regions as transposable elements. We first identified regions of highly variable DNA methylation in a subset of genotypes representative of the biological diversity in the population by WGBS. We then analysed the variations of DNA methylation in these targeted regions at the population level by sequencing capture bisulfite (SeqCapBis). The entire strategy was then validated by applying it to another species. Our strategy was developed as a proof of concept on natural populations of two forest species: Populus nigra and Quercus petraea.
Assuntos
Metilação de DNA , Epigênese Genética , Populus , Quercus , Populus/genética , Quercus/genética , Variação Genética , Genoma de PlantaRESUMO
Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.
Assuntos
DNA Ambiental , Microbiota , Pinus , Monitoramento Biológico , Betula , Microbiota/genéticaRESUMO
High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.
Assuntos
Fagus , Adaptação Fisiológica , Mudança Climática , Fagus/genética , Variação Genética , Temperatura , ÁrvoresRESUMO
In the last two decades, the extensive genome sequencing of strains belonging to the Saccharomyces genus has revealed the complex reticulated evolution of this group. Among the various evolutionary mechanisms described, the introgression of large chromosomal regions resulting from interspecific hybridization has recently shed light on Saccharomyces uvarum species. In this work we provide the de novo assembled genomes of four S. uvarum strains presenting more than 712 kb of introgressed loci inherited from both Saccharomyces eubayanus and Saccharomyces kudriavzevii species. In order to study the prevalence of such introgressions in a large population, we designed multiplexed PCR markers able to survey the inheritance of eight chromosomal regions. Our data confirm that introgressions are widely disseminated in Holarctic S. uvarum populations and are more frequently found in strains isolated from human-related fermentations. According to the origin of the strains (nature or cider- or wine-related processes), some loci are over-represented, suggesting their positive selection by human activity. Except for one locus located on chromosome 7, the introgressions present a low level of heterozygozity similar to that observed for nine neutral markers (microsatellites). Finally, most of the loci tested showed an expected Mendelian segregation after meiosis and can recombine with their chromosomal counterpart in S. uvarum. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Bebidas Alcoólicas/microbiologia , Cromossomos Fúngicos/genética , Hibridização Genética , Saccharomyces/genética , Mapeamento Cromossômico , DNA Fúngico/genética , Fermentação , Marcadores Genéticos , Variação Genética , Genoma Fúngico , Genótipo , Humanos , Repetições de Microssatélites , Reação em Cadeia da Polimerase/métodos , Especificidade da EspécieRESUMO
Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management.
Assuntos
DNA Antigo/química , Análise de Sequência de DNA/métodos , Madeira , Biodiversidade , Evolução Biológica , Mudança Climática , Florestas , Quercus/genéticaRESUMO
Understanding the mechanisms behind the typicity of regional wines inevitably brings attention to microorganisms associated with their production. Oenococcus oeni is the main bacterial species involved in wine and cider making. It develops after the yeast-driven alcoholic fermentation and performs the malolactic fermentation, which improves the taste and aromatic complexity of most wines. Here, we have evaluated the diversity and specificity of O. oeni strains in six regions. A total of 235 wines and ciders were collected during spontaneous malolactic fermentations and used to isolate 3,212 bacterial colonies. They were typed by multilocus variable analysis, which disclosed a total of 514 O. oeni strains. Their phylogenetic relationships were evaluated by a second typing method based on single nucleotide polymorphism (SNP) analysis. Taken together, the results indicate that each region holds a high diversity of strains that constitute a unique population. However, strains present in each region belong to diverse phylogenetic groups, and the same groups can be detected in different regions, indicating that strains are not genetically adapted to regions. In contrast, greater strain identity was seen for cider, white wine, or red wine of Burgundy, suggesting that genetic adaptation to these products occurred. IMPORTANCE: This study reports the isolation, genotyping, and geographic distribution analysis of the largest collection of O. oeni strains performed to date. It reveals that there is very high diversity of strains in each region, the majority of them being detected in a single region. The study also reports the development of an SNP genotyping method that is useful for analyzing the distribution of O. oeni phylogroups. The results show that strains are not genetically adapted to regions but to specific types of wines. They reveal new phylogroups of strains, particularly two phylogroups associated with white wines and red wines of Burgundy. Taken together, the results shed light on the diversity and specificity of wild strains of O. oeni, which is crucial for understanding their real contribution to the unique properties of wines.
Assuntos
Genótipo , Oenococcus/genética , Polimorfismo de Nucleotídeo Único , Vinho/microbiologia , Oenococcus/classificação , Filogenia , Análise de Sequência de DNARESUMO
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Assuntos
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenômica , Melhoramento VegetalRESUMO
Natural hybridization is attracting much interest in modern speciation and conservation biology studies, but the underlying mechanisms remain poorly understood. In particular, it is unclear why environmental changes often increase hybridization rates. To study this question, we surveyed mating events in a mixed oak stand and developed a spatially explicit individual-based hybridization model. This model, where hybridization is frequency-dependent, pollen is nonlimiting and which allows immigrant pollen to compete with local pollen, takes into account species-specific pollen dispersal and sexual barriers to hybridization. The consequences of pollen limitation on hybridization were studied using another simple model. The results indicate that environmental changes could increase hybridization rates through two distinct mechanisms. First, by disrupting the spatial organization of communities, they should decrease the proportion of conspecific pollen available for mating, thus increasing hybridization rates. Second, by decreasing the density of conspecifics, they should increase pollen limitation and thus hybridization rates, as a consequence of chance pollination predominating over deterministic pollen competition. Altogether, our results point to a need for considering hybridization events at the appropriate level of organization and provide new insights into why hybridization rates generally increase in disturbed environments.
Assuntos
Meio Ambiente , Hibridização Genética , Polinização/genética , Quercus/genética , DNA de Plantas/genética , Genótipo , Modelos Genéticos , Peptídeos Cíclicos , Pólen/genéticaRESUMO
OBJECTIVES: Dysbiotic bacterial communities within the vagina are associated with Chlamydia trachomatis infection. We compared the effect of treatment with azithromycin and doxycycline on the vaginal microbiota in a cohort of women with a urogenital C. trachomatis infection randomly assigned to one of these treatments (Chlazidoxy trial). METHODS: We analysed vaginal samples from 284 women (135 in the azithromycin group and 149 in the doxycycline group) collected at baseline and 6 weeks after treatment initiation. The vaginal microbiota was characterized using 16S rRNA gene sequencing and classified into community state types (CSTs). RESULTS: At baseline, 75% (212/284) of the women had a high-risk microbiota (CST-III or CST-IV). A cross-sectional comparison 6 weeks after treatment showed that 15 phylotypes were differentially abundant, but this difference was not reflected at the CST (p 0.772) or diversity level (p 0.339). Between baseline and the 6-week visit, α-diversity (p 0.140) and transition probabilities between CSTs were not significantly different between the groups, and no phylotype was differentially abundant. DISCUSSION: In women with urogenital C. trachomatis infection, the vaginal microbiota does not seem to be affected by azithromycin or doxycycline 6 weeks after treatment. Because the vaginal microbiota remains susceptible to C. trachomatis infection (with CST-III or CST-IV) after antibiotic treatment, women remain at risk of reinfection, which could originate from unprotected sexual intercourse or untreated anorectal C. trachomatis infection. This last consideration advocates for the use of doxycycline instead of azithromycin because of its higher anorectal microbiological cure rate.
Assuntos
Infecções por Chlamydia , Microbiota , Infecções Urinárias , Feminino , Humanos , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Chlamydia trachomatis/genética , RNA Ribossômico 16S/genética , Estudos Transversais , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vagina/microbiologia , Infecções Urinárias/tratamento farmacológicoRESUMO
Mycoplasma feriruminatoris is a fast-growing Mycoplasma species isolated from wild Caprinae and first described in 2013. M. feriruminatoris isolates have been associated with arthritis, kerato conjunctivitis, pneumonia and septicemia, but were also recovered from apparently healthy animals. To better understand what defines this species, we performed a genomic survey on 14 strains collected from free-ranging or zoo-housed animals between 1987 and 2017, mostly in Europe. The average chromosome size of the M. feriruminatoris strains was 1,040±0,024 kbp, with 24â% G+C and 852±31 CDS. The core genome and pan-genome of the M. feriruminatoris species contained 628 and 1312 protein families, respectively. The M. feriruminatoris strains displayed a relatively closed pan-genome, with many features and putative virulence factors shared with species from the M. mycoides cluster, including the MIB-MIP Ig cleavage system, a repertoire of DUF285 surface proteins and a complete biosynthetic pathway for galactan. M. feriruminatoris genomes were found to be mostly syntenic, although repertoires of mobile genetic elements, including Mycoplasma Integrative and Conjugative Elements, insertion sequences, and a single plasmid varied. Phylogenetic- and gene content analyses confirmed that M. feriruminatoris was closer to the M. mycoides cluster than to the ruminant species M. yeatsii and M. putrefaciens. Ancestral genome reconstruction showed that the emergence of the M. feriruminatoris species was associated with the gain of 17 gene families, some of which encode defence enzymes and surface proteins, and the loss of 25 others, some of which are involved in sugar transport and metabolism. This comparative study suggests that the M. mycoides cluster could be extended to include M. feriruminatoris. We also find evidence that the specific organization and structure of the DnaA boxes around the oriC of M. feriruminatoris may contribute to drive the remarkable fast growth of this minimal bacterium.
Assuntos
Mycoplasma mycoides , Mycoplasma , Animais , Genoma Bacteriano , Filogenia , Mycoplasma mycoides/genética , Mycoplasma mycoides/metabolismo , Mycoplasma/genética , Ruminantes/microbiologia , Genômica , Proteínas de Membrana/genéticaRESUMO
It has been shown that living in risky environments, as well as having a risky occupation, can moderate risk-tolerance. Despite the involvement of dopamine in the expectation of reward described by neurobiologists, a GWAS study was not able to demonstrate a genetic contribution of genes involved in the dopaminergic pathway in risk attitudes and gene candidate studies gave contrasting results. We test the possibility that a genetic effect of the DRD4-7R allele in risk-taking behavior could be modulated by environmental factors. We show that the increase in risk-tolerance due to the 7R allele is independent of the environmental risk in two populations in Northern Senegal, one of which is exposed to a very high risk due to dangerous fishing.
Assuntos
Dopamina , Receptores de Dopamina D4 , Alelos , Genótipo , Receptores de Dopamina D4/genética , Senegal , HumanosRESUMO
One promising avenue for reconciling the goals of crop production and ecosystem preservation consists in the manipulation of beneficial biotic interactions, such as between insects and microbes. Insect gut microbiota can affect host fitness by contributing to development, host immunity, nutrition, or behavior. However, the determinants of gut microbiota composition and structure, including host phylogeny and host ecology, remain poorly known. Here, we used a well-studied community of eight sympatric fruit fly species to test the contributions of fly phylogeny, fly specialization, and fly sampling environment on the composition and structure of bacterial gut microbiota. Comprising both specialists and generalists, these species belong to five genera from to two tribes of the Tephritidae family. For each fly species, one field and one laboratory samples were studied. Bacterial inventories to the genus level were produced using 16S metabarcoding with the Oxford Nanopore Technology. Sample bacterial compositions were analyzed with recent network-based clustering techniques. Whereas gut microbiota were dominated by the Enterobacteriaceae family in all samples, microbial profiles varied across samples, mainly in relation to fly identity and sampling environment. Alpha diversity varied across samples and was higher in the Dacinae tribe than in the Ceratitinae tribe. Network analyses allowed grouping samples according to their microbial profiles. The resulting groups were very congruent with fly phylogeny, with a significant modulation of sampling environment, and with a very low impact of fly specialization. Such a strong imprint of host phylogeny in sympatric fly species, some of which share much of their host plants, suggests important control of fruit flies on their gut microbiota through vertical transmission and/or intense filtering of environmental bacteria.
RESUMO
Patients with obesity are known to exhibit gut microbiota dysbiosis and memory deficits. Bariatric surgery (BS) is currently the most efficient anti-obesity treatment and may improve both gut dysbiosis and cognition. However, no study has investigated association between changes of gut microbiota and cognitive function after BS. We prospectively evaluated 13 obese patients on anthropometric data, memory functions, and gut microbiota-mycobiota before and six months after BS. The Rey Auditory Verbal Learning Test (AVLT) and the symbol span (SS) of the Weschler Memory Scale were used to assess verbal and working memory, respectively. Fecal microbiota and mycobiota were longitudinally analyzed by 16S and ITS2 rRNA sequencing respectively. AVLT and SS scores were significantly improved after BS (AVLT scores: 9.7 ± 1.7 vs. 11.2 ± 1.9, p = 0.02, and SS scores: 9.7 ± 23.0 vs. 11.6 ± 2.9, p = 0.05). An increase in bacterial alpha-diversity, and Ruminococcaceae, Prevotella, Agaricus, Rhodotorula, Dipodascus, Malassezia, and Mucor were significantly associated with AVLT score improvement after BS, while an increase in Prevotella and a decrease in Clostridium, Akkermansia, Dipodascus and Candida were linked to SS scores improvement. We identified several changes in the microbial communities that differ according to the improvement of either the verbal or working memories, suggesting a complex gut-brain-axis that evolves after BS.
Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Memória , Micobioma , Obesidade Mórbida/cirurgia , Adolescente , Adulto , Idoso , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Fezes/microbiologia , Feminino , Fungos/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/microbiologia , Obesidade Mórbida/psicologia , Projetos Piloto , Estudos Prospectivos , Adulto JovemRESUMO
The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.
RESUMO
BACKGROUND: Expressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut). RESULTS: A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher. CONCLUSION: We have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance.
Assuntos
Mapeamento Cromossômico/economia , Mapeamento Cromossômico/métodos , Etiquetas de Sequências Expressas , Marcadores Genéticos , Repetições Minissatélites/genética , Quercus/genética , Análise Custo-Benefício , Mineração de Dados , Genoma de Planta/genética , Repetições de Microssatélites/genética , Polimorfismo GenéticoRESUMO
The Pacific oyster, Crassostrea gigas, was voluntarily introduced from Japan and British Columbia into Europe in the early 1970s, mainly to replace the Portuguese oyster, Crassostrea angulata, in the French shellfish industry, following a severe disease outbreak. Since then, the two species have been in contact in southern Europe and, therefore, have the potential to exchange genes. Recent evolutionary genomic works have provided empirical evidence that C. gigas and C. angulata exhibit partial reproductive isolation. Although hybridization occurs in nature, the rate of interspecific gene flow varies across the genome, resulting in highly heterogeneous genome divergence. Taking this biological property into account is important to characterize genetic ancestry and population structure in oysters. Here, we identified a subset of ancestry-informative makers from the most differentiated regions of the genome using existing genomic resources. We developed two different panels in order to (i) easily differentiate C. gigas and C. angulata, and (ii) describe the genetic diversity and structure of the cupped oyster with a particular focus on French Atlantic populations. Our results confirm high genetic homogeneity among Pacific cupped oyster populations in France and reveal several cases of introgressions between Portuguese and Japanese oysters in France and Portugal.
Assuntos
Biodiversidade , Biologia Computacional/métodos , Crassostrea/genética , Polimorfismo de Nucleotídeo Único , Alimentos Marinhos/análise , Animais , Europa (Continente) , Especiação GenéticaRESUMO
Application of high-throughput sequencing technologies to microsatellite genotyping (SSRseq) has been shown to remove many of the limitations of electrophoresis-based methods and to refine inference of population genetic diversity and structure. We present here a streamlined SSRseq development workflow that includes microsatellite development, multiplexed marker amplification and sequencing, and automated bioinformatics data analysis. We illustrate its application to five groups of species across phyla (fungi, plant, insect and fish) with different levels of genomic resource availability. We found that relying on previously developed microsatellite assay is not optimal and leads to a resulting low number of reliable locus being genotyped. In contrast, de novo ad hoc primer designs gives highly multiplexed microsatellite assays that can be sequenced to produce high quality genotypes for 20-40 loci. We highlight critical upfront development factors to consider for effective SSRseq setup in a wide range of situations. Sequence analysis accounting for all linked polymorphisms along the sequence quickly generates a powerful multi-allelic haplotype-based genotypic dataset, calling to new theoretical and analytical frameworks to extract more information from multi-nucleotide polymorphism marker systems.
RESUMO
The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, it is crucial to identify the source populations of the introduction. Studies in population genetics were carried out on Robinia pseudoacacia L., a North American tree which is now one of the worst invasive tree species in Europe. We realized large-scale sampling in both the invasive and native ranges: 63 populations were sampled and 818 individuals were genotyped using 113 SNPs. We identified clonal genotypes in each population and analyzed between and within range population structure, and then, we compared genetic diversity between ranges, enlarging the number of SNPs to mitigate the ascertainment bias. First, we demonstrated that European black locust was introduced from just a limited number of populations located in the Appalachian Mountains, which is in agreement with the historical documents briefly reviewed in this study. Within America, population structure reflected the effects of long-term processes, whereas in Europe it was largely impacted by human activities. Second, we showed that there is a genetic bottleneck between the ranges with a decrease in allelic richness and total number of alleles in Europe. Lastly, we found more clonality within European populations. Black locust became invasive in Europe despite being introduced from a reduced part of its native distribution. Our results suggest that human activity, such as breeding programs in Europe and the seed trade throughout the introduced range, had a major role in promoting invasion; therefore, the introduction of the missing American genetic cluster to Europe should be avoided.
RESUMO
DNA barcoding has proved difficult in a number of woody plant genera, including the ecologically important oak genus Quercus. In this study, we utilized restrictionsite-associated DNA sequencing (RAD-seq) to develop an economical single nucleotide polymorphism (SNP) DNA barcoding system that suffices to distinguish eight common, sympatric eastern North American white oak species. Two de novo clustering pipelines, PyRAD and Stacks, were used in combination with postclustering bioinformatic tools to generate a list of 291 potential SNPs, 80 of which were included in a barcoding toolkit that is easily implemented using MassARRAY mass spectrometry technology. As a proof-of-concept, we used the genotyping toolkit to infer potential hybridization between North American white oaks transplanted outside of their native range (Q. michauxii, Q. montana, Q muehlenbergii/Q. prinoides, and Q. stellata) into a horticultural collection surrounded by natural forests of locally native trees (Q. alba and Q. macrocarpa) in the living collection at The Morton Arboretum (Lisle, IL, USA). Phylogenetic and clustering analyses suggested low rates of hybridization between cultivated and native species, with the exception of one Q. michauxii mother tree, the acorns of which exhibited high admixture from either Q. alba or Q. stellata and Q. macrocarpa, and a hybrid between Q. stellata that appears to have backcrossed almost exclusively to Q. alba. Together, RAD-seq and MassARRAY technologies allow for efficient development and implementation of a multispecies barcode for one of the more challenging forest tree genera.