Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Neurochem Res ; 44(3): 609-616, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29353373

RESUMO

Maternal immune challenge has proved to induce moderate to severe behavioral disabilities in the offspring. Cognitive/behavioral deficits are supported by changes in synaptic plasticity in different brain areas. We have reported previously that prenatal exposure to bacterial LPS could induce inhibition of hippocampal long-term potentiation (LTP) in the CA1 area of the juvenile/adult male offspring associated with spatial learning inabilities. Nevertheless, deficits in plasticity could be observed at earlier stages as shown by the early loss of long-term depression (LTD) in immature animals. Moreover, aberrant forms of plasticity were also evidenced such as the transient occurrence of LTP instead of LTD in 15-25 day-old animals. This switch from LTD to LTP seemed to involve the activation of metabotropic glutamate receptor subtype 1 and 5 (mGlu1/5). We have thus investigated here whether the long-term depression elicited by the direct activation of these receptors (mGlu-LTD) with a selective agonist was also disturbed after prenatal stress. We find that in prenatally stressed rats, mGlu1/5 stimulation elicits long-term potentiation (mGlu-LTP) independently of N-methyl-D-aspartate receptors. Both mGlu5 and mGlu1 receptors are involved in this switch of plasticity. Moreover, this mGlu-LTP is still observed at later developmental stages than previously reported, i.e. after 25 day-old. In addition, increasing synaptic GABA with tiagabine tends to inhibit mGlu-LTP occurrence. By contrast, long-term depression induced with the activation of CB1 cannabinoid receptor is unaffected by prenatal stress. Therefore, prenatal stress drastically alters mGlu1/5-associated plasticity throughout development. MGlu-mediated plasticity is an interesting parameter to probe the long-lasting deficits reported in this model.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Glutamato Metabotrópico/imunologia , Transmissão Sináptica/fisiologia , Animais , Depressão/imunologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/imunologia , Potenciação de Longa Duração/imunologia , Plasticidade Neuronal/imunologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/imunologia , Transmissão Sináptica/imunologia
2.
Eur J Neurosci ; 42(8): 2568-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26153524

RESUMO

Acute effects of ghrelin on excitatory synaptic transmission were evaluated on hippocampal CA1 synapses. Ghrelin triggered an enduring enhancement of synaptic transmission independently of NMDA receptor activation and probably via postsynaptic modifications. This ghrelin-mediated potentiation resulted from the activation of GHS-R1a receptors as it was mimicked by the selective agonist JMV1843 and blocked by the selective antagonist JMV2959. This potentiation also required the activation of PKA and ERK pathways to occur as it was inhibited by KT5720 and U0126, respectively. Moreover it most probably involved Ca(2+) influxes as both ghrelin and JMV1843 elicited intracellular Ca(2+) increases, which were dependent on the presence of extracellular Ca(2+) and mediated by L-type Ca(2+) channels opening. In addition, ghrelin potentiated AMPA receptor-mediated [Ca(2+) ]i increases while decreasing NMDA receptor-mediated ones. Thus the potentiation of synaptic transmission by GHS-R1a at hippocampal CA1 excitatory synapses probably results from postsynaptic mechanisms involving PKA and ERK activation, which are producing long-lasting enhancement of AMPA receptor-mediated responses.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Grelina/metabolismo , Potenciação de Longa Duração/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Transmissão Sináptica/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Fármacos do Sistema Nervoso Central/administração & dosagem , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Grelina/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Grelina/agonistas , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
3.
Pediatr Res ; 73(6): 750-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23478644

RESUMO

BACKGROUND: Prenatal infection is a major risk factor for the occurrence of neuropsychiatric disorders. These have been associated with hippocampal neuroanatomical and functional abnormalities. In the present study, we evaluated the occurrence of pyramidal cell disarray and reelin neuronal deficit in the hippocampus, and the protective role of N-acetyl-cysteine (NAC) in a rodent experimental model of prenatal immune challenge. METHODS: Sprague-Dawley rats received either 500 µg/kg of endotoxin (lipopolysaccharide, LPS) or 2 ml/kg of isotonic saline by i.p. injection on day 19 of gestation. After LPS injection, rats were or were not maintained on a preventive treatment of NAC (5 g/l in tap water), up to delivery. The pyramidal cell orientation and the number and type of reelin-expressing neurons were determined in male offspring. RESULTS: Prenatal LPS challenge led to permanent pyramidal cell disarray and to an early and transient decreased density of reelin-immunoreactive neurons. These disorders, more pronounced in the CA3 area, were prevented by NAC. CONCLUSION: Hippocampal cytoarchitectural alterations and reelin deficiency may be involved in the development of remote cognitive impairments in this model. The antioxidant NAC is an efficient neuroprotective drug that underlines the role of oxidative stress in prenatal infection and associated neurodevelopmental damage.


Assuntos
Acetilcisteína/farmacologia , Região CA3 Hipocampal/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Exposição Materna , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Células Piramidais/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Animais , Região CA3 Hipocampal/citologia , Feminino , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Proteína Reelina
4.
Sci Rep ; 12(1): 12475, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864200

RESUMO

Besides the standard parameters used for colorectal cancer (CRC) management, new features are needed in clinical practice to improve progression-free and overall survival. In some cancers, the microenvironment mechanical properties can contribute to cancer progression and metastasis formation, or constitute a physical barrier for drug penetration or immune cell infiltration. These mechanical properties remain poorly known for colon tissues. Using a multidisciplinary approach including clinical data, physics and geostatistics, we characterized the stiffness of healthy and malignant colon specimens. For this purpose, we analyzed a prospective cohort of 18 patients with untreated colon adenocarcinoma using atomic force microscopy to generate micrometer-scale mechanical maps. We characterized the stiffness of normal epithelium samples taken far away or close to the tumor area and selected tumor tissue areas. These data showed that normal epithelium was softer than tumors. In tumors, stroma areas were stiffer than malignant epithelial cell areas. Among the clinical parameters, tumor left location, higher stage, and RAS mutations were associated with increased tissue stiffness. Thus, in patients with CRC, measuring tumor tissue rigidity may have a translational value and an impact on patient care.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Colorretais , Adenocarcinoma/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Estudos Prospectivos , Microambiente Tumoral
5.
Amino Acids ; 40(3): 913-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20706748

RESUMO

Five derivatives of 2-amino-adipic acid bearing a tetrazole-substituted in C5 position were synthesized. These compounds displayed selective antagonism towards N-methyl-D: -aspartate (NMDA) receptors compared with AMPA receptors, and they were devoid of any neurotoxicity. Among these five analogues, one exhibited a higher affinity for synaptic NMDA responses than the other four. Therefore, C5 tetrazole-substituted of 2-amino-adipic acid represent an interesting series of new NMDA receptor antagonists. This approach may be considered as a new strategy to develop ligands specifically targeted to synaptic or extra-synaptic NMDA receptors.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tetrazóis/síntese química , Tetrazóis/farmacologia , Adipatos/química , Inibidores Enzimáticos/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Tetrazóis/química
6.
Front Aging Neurosci ; 13: 785727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975458

RESUMO

The regulation of the redox status involves the activation of intracellular pathways as Nrf2 which provides hormetic adaptations against oxidative stress in response to environmental stimuli. In the brain, Nrf2 activation upregulates the formation of glutathione (GSH) which is the primary antioxidant system mainly produced by astrocytes. Astrocytes have also been shown to be themselves the target of oxidative stress. However, how changes in the redox status itself could impact the intracellular Ca2+ homeostasis in astrocytes is not known, although this could be of great help to understand the neuronal damage caused by oxidative stress. Indeed, intracellular Ca2+ changes in astrocytes are crucial for their regulatory actions on neuronal networks. We have manipulated GSH concentration in astroglioma cells with selective inhibitors and activators of the enzymes involved in the GSH cycle and analyzed how this could modify Ca2+ homeostasis. IP3-mediated store-operated calcium entry (SOCE), obtained after store depletion elicited by Gq-linked purinergic P2Y receptors activation, are either sensitized or desensitized, following GSH depletion or increase, respectively. The desensitization may involve decreased expression of the proteins STIM2, Orai1, and Orai3 which support SOCE mechanism. The sensitization process revealed by exposing cells to oxidative stress likely involves the increase in the activity of Calcium Release-Activated Channels (CRAC) and/or in their membrane expression. In addition, we observe that GSH depletion drastically impacts P2Y receptor-mediated changes in membrane currents, as evidenced by large increases in Ca2+-dependent K+ currents. We conclude that changes in the redox status of astrocytes could dramatically modify Ca2+ responses to Gq-linked GPCR activation in both directions, by impacting store-dependent Ca2+-channels, and thus modify cellular excitability under purinergic stimulation.

7.
Front Pharmacol ; 12: 794680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046818

RESUMO

Gamma-L-glutamyl-L-glutamate (γ-Glu-Glu) was synthetized and further characterized for its activity on cultured neurons. We observed that γ-Glu-Glu elicited excitatory effects on neurons likely by activating mainly the N-methyl-D-aspartate (NMDA) receptors. These effects were dependent on the integrity of synaptic transmission as they were blocked by tetrodotoxin (TTX). We next evaluated its activity on NMDA receptors by testing it on cells expressing these receptors. We observed that γ-Glu-Glu partially activated NMDA receptors and exhibited better efficacy for NMDA receptors containing the GluN2B subunit. Moreover, at low concentration, γ-Glu-Glu potentiated the responses of glutamate on NMDA receptors. Finally, the endogenous production of γ-Glu-Glu was measured by LC-MS on the extracellular medium of C6 rat astroglioma cells. We found that extracellular γ-Glu-Glu concentration was, to some extent, directly linked to GSH metabolism as γ-Glu-Glu can be a by-product of glutathione (GSH) breakdown after γ-glutamyl transferase action. Therefore, γ-Glu-Glu could exert excitatory effects by activating neuronal NMDA receptors when GSH production is enhanced.

8.
RNA ; 14(9): 1852-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18676616

RESUMO

Fibroblast growth factor-2 (FGF-2) plays a fundamental role in brain functions. This role may be partly achieved through the control of its expression at the translational level via an internal ribosome entry site (IRES)-dependent mechanism. Transgenic mice expressing a bicistronic mRNA allowed us to study in vivo and ex vivo where this translational mechanism operates. Along brain development, we identified a stringent spatiotemporal regulation of FGF-2 IRES activity showing a peak at post-natal day 7 in most brain regions, which is concomitant with neuronal maturation. At adult age, this activity remained relatively high in forebrain regions. By the enrichment of this activity in forebrain synaptoneurosomes and by the use of primary cultures of cortical neurons or cocultures with astrocytes, we showed that this activity is indeed localized in neurons, is dependent on their maturation, and correlates with endogenous FGF-2 protein expression. In addition, this activity was regulated by astrocyte factors, including FGF-2, and spontaneous electrical activity. Thus, neuronal IRES-driven translation of the FGF-2 mRNA may be involved in synapse formation and maturation.


Assuntos
Encéfalo/crescimento & desenvolvimento , Fator 2 de Crescimento de Fibroblastos/biossíntese , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Sinapses Elétricas/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , RNA Mensageiro/biossíntese , Receptores de Glutamato/metabolismo
9.
Br J Pharmacol ; 177(17): 3924-3940, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32436264

RESUMO

BACKGROUND AND PURPOSE: Despite a growing awareness, annual losses of honeybee colonies worldwide continue to reach threatening levels for food safety and global biodiversity. Among the biotic and abiotic stresses probably responsible for these losses, pesticides, including those targeting ionotropic GABA receptors, are one of the major drivers. Most insect genomes include the ionotropic GABA receptor subunit gene, Rdl, and two GABA-like receptor subunit genes, Lcch3 and Grd. Most studies have focused on Rdl which forms homomeric GABA-gated chloride channels, and a complete analysis of all possible molecular combinations of GABA receptors is still lacking. EXPERIMENTAL APPROACH: We cloned the Rdl, Grd, and Lcch3 genes of Apis mellifera and systematically characterized the resulting GABA receptors expressed in Xenopus oocytes, using electrophysiological assays, fluorescence microscopy and co-immunoprecipitation techniques. KEY RESULTS: The cloned subunits interacted with each other, forming GABA-gated heteromeric channels with particular properties. Strikingly, these heteromers were always more sensitive than AmRDL homomer to all the pharmacological agents tested. In particular, when expressed together, Grd and Lcch3 form a non-selective cationic channel that opens at low concentrations of GABA and with sensitivity to insecticides similar to that of homomeric Rdl channels. CONCLUSION AND IMPLICATIONS: For off-target species like the honeybee, chronic sublethal exposure to insecticides constitutes a major threat. At these concentration ranges, homomeric RDL receptors may not be the most pertinent target to study and other ionotropic GABA receptor subtypes should be considered in order to understand more fully the molecular mechanisms of sublethal toxicity to insecticides.


Assuntos
Inseticidas , Receptores de GABA , Animais , Abelhas , Canais de Cloreto , Receptores de GABA/genética , Receptores de GABA/metabolismo
10.
Hippocampus ; 18(6): 602-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18306297

RESUMO

Prenatal infection is a major stressful experience leading to enhanced susceptibility for mental illnesses in humans. We recently reported in rats, that oxidative stress and glutathione (GSH) shortage occurred in fetal male brain after lipopolysaccharide (LPS) to the dams and that these responses might be involved in the neurodevelopmental deficits observed in adolescent offspring. Furthermore, pretreatment with N-acetylcysteine (NAC) before LPS avoided both delayed synaptic plasticity and mnesic performance deficits. Since NAC is one of the few medications permitted in pregnant women, this study evaluated the ability of NAC to serve as a protective therapy even after the LPS challenge. Pregnant rats received a single ip injection of E. coli LPS, two days before delivery, and were given NAC in their tap water after the LPS. GSH was evaluated at the time of its expected drop in the hippocampus of male fetuses, whereas long-term potentiation (LTP) in the CA1 area of the hippocampus and spatial memory in the water-maze were recorded in 28-day-old male offspring. Post-treatment with NAC, four hours after the LPS challenge fully prevented the drop in the GSH hippocampal content. LTP, as well as spatial learning were completely protected. NAC administration at delivery also partially restored the LTP whereas post-treatment two days later was inefficient. Another set of dams were supplemented with alpha-tocopherol prior to LPS exposure, enhancing the alpha-tocopherol levels in fetal hippocampus. This treatment did not prevent the LPS-induced synaptic plasticity impairment. These results point to fetal hippocampal GSH as a major target of the detrimental effects of in utero LPS challenge. The therapeutic window of NAC extends up to birth, suggesting that this drug might be clinically useful even after an immuno-inflammatory episode.


Assuntos
Acetilcisteína/administração & dosagem , Endotoxemia/tratamento farmacológico , Potenciação de Longa Duração , Exposição Materna , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Complicações na Gravidez/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos , Endotoxemia/imunologia , Endotoxemia/fisiopatologia , Feminino , Glutationa/análise , Glutationa/deficiência , Hipocampo/química , Hipocampo/embriologia , Hipocampo/patologia , Lipopolissacarídeos/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Gravidez , Complicações na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/análise , alfa-Tocoferol/uso terapêutico
11.
Free Radic Biol Med ; 42(9): 1326-37, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17395006

RESUMO

We have reported that a transient treatment of hippocampal neurons with alpha-tocopherol induced a long-lasting protection against oxidative damage mediated by Fe(2+) ions. This protection required protein synthesis. Here, we have studied whether this "hyposensitivity" to oxidative stress could be linked to an altered Ca(2+) homeostasis. Fe(2+) ions triggered a Ca(2+) entry which was required for Fe(2+) ion-induced toxicity. This influx was sensitive to blockers of TRP-like nonspecific Ca(2+) channels, including Ruthenium Red, La(3+), and Gd(3+) ions which also prevented the Fe(2+) ion-induced toxicity and oxidative stress as revealed by protein carbonylation status. The pretreatment with alpha-tocopherol resulted in a reduction of the Ca(2+) increase induced by Fe(2+) ions and masked the blocking effect of La(3+) ions. Moreover, such a pretreatment reduced the capacitive Ca(2+) entries (CCE) observed after metabotropic glutamate receptor stimulation, which are known to involve TRP-like channels. By contrast, in a model of "hypersensitivity" to oxidative stress obtained by chronic stimulation of glucocorticoid receptors, we observed an exacerbation of the various effects of Fe(2+) ions, i.e., cellular toxicity and Ca(2+) increase, and the glutamate-stimulated CCE. Therefore, we conclude that the long-lasting neuroprotection induced by alpha-tocopherol pretreatment likely results from an attenuation of Ca(2+) entries via TRP-like channels.


Assuntos
Canais de Cálcio/fisiologia , Dano ao DNA/efeitos dos fármacos , Hipocampo/citologia , Neurônios/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Canais de Cátion TRPC/fisiologia , alfa-Tocoferol/farmacologia , Animais , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/efeitos dos fármacos
12.
Free Radic Biol Med ; 42(8): 1231-45, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17382204

RESUMO

Prenatal infection is a major risk responsible for the occurrence of psychiatric conditions in infants. Mimicking maternal infection by exposing pregnant rodents to bacterial endotoxin lipopolysaccharide (LPS) also leads to major brain disorders in the offspring. The mechanisms of LPS action remain, however, unknown. Here, we show that LPS injection during pregnancy in rats, 2 days before delivery, triggered an oxidative stress in the hippocampus of male fetuses, evidenced by a rapid rise in protein carbonylation and by decreases in alpha-tocopherol levels and in the ratio of reduced/oxidized forms of glutathione (GSH/GSSG). Neither protein carbonylation increase nor decreases in alpha-tocopherol levels and GSH/GSSG ratio were observed in female fetuses. NMDA synaptic currents and long-term potentiation in CA1, as well as spatial recognition in the water maze, were also impaired in male but not in female 28-day-old offspring. Pretreatment with the antioxidant N-acetylcysteine prevented the LPS-induced changes in the biochemical markers of oxidative stress in male fetuses, and the delayed detrimental effects in male 28-day-old offspring, completely restoring both long-term potentiation in the hippocampus and spatial recognition performance. Oxidative stress in the hippocampus of male fetuses may thus participate in the neurodevelopmental damage induced by a prenatal LPS challenge.


Assuntos
Encéfalo/embriologia , Infecções/embriologia , Estresse Oxidativo , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/embriologia , Encefalopatias/etiologia , Cromatografia Líquida de Alta Pressão , Feminino , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hipocampo/embriologia , Hipocampo/fisiopatologia , Lipopolissacarídeos/toxicidade , Técnicas de Patch-Clamp , Gravidez , Ratos , Ratos Sprague-Dawley , alfa-Tocoferol/metabolismo
13.
ACS Chem Neurosci ; 8(8): 1724-1734, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511005

RESUMO

l-Theanine (or l-γ-N-ethyl-glutamine) is the major amino acid found in Camellia sinensis. It has received much attention because of its pleiotropic physiological and pharmacological activities leading to health benefits in humans, especially. We describe here a new, easy, efficient, and environmentally friendly chemical synthesis of l-theanine and l-γ-N-propyl-Gln and their corresponding d-isomers. l-Theanine, and its derivatives obtained so far, exhibited partial coagonistic action at N-methyl-d-aspartate (NMDA) receptors, with no detectable agonist effect at other glutamate receptors, on cultured hippocampal neurons. This activity was retained on NMDA receptors expressed in Xenopus oocytes. In addition, both GluN2A and GluN2B containing NMDA receptors were equally modulated by l-theanine. The stereochemical change from l-theanine to d-theanine along with the substitution of the ethyl for a propyl moiety in the γ-N position of l- and d-theanine significantly enhanced the biological efficacy, as measured on cultured hippocampal neurons. l-Theanine structure thus represents an interesting backbone to develop novel NMDA receptor modulators.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/síntese química , Agonistas de Aminoácidos Excitatórios/farmacologia , Glutamatos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Oócitos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Xenopus , Ácido gama-Aminobutírico/metabolismo
14.
Brain Res ; 1110(1): 102-15, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16859659

RESUMO

Naturally occurring polyphenols are potent antioxidants. Some of these compounds are also ligands for the GABA(A) receptor benzodiazepine site. This feature endows them with sedative properties. Here, the anxiolytic activity of the green tea polyphenol (-)-epigallocatechin gallate (EGCG) was investigated after acute administration in mice, using behavioral tests (elevated plus-maze and passive avoidance tests) and by electrophysiology on cultured hippocampal neurons. Patch-clamp experiments revealed that EGCG (1-10 muM) had no effect on GABA currents. However, EGCG reversed GABA(A) receptor negative modulator methyl beta-carboline-3-carboxylate (beta-CCM) inhibition on GABA currents in a concentration dependent manner. This was also observed at the level of synaptic GABA(A) receptors by recording spontaneous inhibitory synaptic transmission. In addition, EGCG consistently inhibited spontaneous excitatory synaptic transmission. Behavioral tests indicated that EGCG exerted both anxiolytic and amnesic effects just like the benzodiazepine drug, chlordiazepoxide. Indeed, EGCG in a dose-dependent manner both increased the time spent in open arms of the plus-maze and decreased the step-down latency in the passive avoidance test. GABA(A) negative modulator beta-CCM antagonized EGCG-induced amnesia. Finally, state-dependent learning was observable after chlordiazepoxide and EGCG administration using a modified passive avoidance procedure. Optimal retention was observed only when animals were trained and tested in the same state (veh-veh or drug-drug) and significant retrieval alteration was observed in different states (veh-drug or drug-veh). Moreover, EGCG and chlordiazepoxide fully generalized in substitution studies, indicating that they induced indistinguishable chemical states for the brain. Therefore, our data support that EGCG can induce anxiolytic activity which could result from an interaction with GABA(A) receptors.


Assuntos
Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Catequina/análogos & derivados , Animais , Ansiedade/etiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Carbolinas/farmacologia , Catequina/uso terapêutico , Células Cultivadas , Clordiazepóxido/farmacologia , Convulsivantes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Eletrochoque/efeitos adversos , Embrião de Mamíferos , Hipocampo/citologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Tempo de Reação/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
15.
Free Radic Biol Med ; 39(8): 1009-20, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16198228

RESUMO

Neuroprotection exerted by alpha-tocopherol against oxidative stress was investigated in cultured rat hippocampal neurons. In addition to its direct action as a radical scavenger revealed at concentrations above 10 microM, a transient application of 1 microM alpha-tocopherol phosphate (alpha-TP) to neurons induced a complete delayed long-lasting protection against oxidative insult elicited by exposure to Fe2+ ions, but not against excitotoxicity. A minimal 16-h application of alpha-TP was required to observe the protection against subsequent oxidative stress. This delayed protection could last up to a week after the application of alpha-TP, even when medium was changed after the alpha-TP treatment. Cycloheximide, added either 2 h before or together with alpha-TP, prevented the delayed neuroprotection, but not the acute. However, cycloheximide applied after the 16-h alpha-TP pretreatment did not alter the delayed neuroprotection. Neither Trolox, a cell-permeant analogue of alpha-tocopherol, nor other antioxidants, such as epigallocatechin-gallate and N-acetyl-L-cysteine, elicited a similar long-lasting protection. Only tert-butylhydroquinone could mimic the alpha-TP effect. Depletion of glutathione (GSH) by L-buthionine sulfoximine did not affect the delayed alpha-TP protection. Thus, in addition to its acute anti-radical action, alpha-TP induces a long-lasting protection of neurons against oxidative damage, via a genomic action on antioxidant defenses apparently unrelated to GSH biosynthesis.


Assuntos
Sequestradores de Radicais Livres/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Células Cultivadas , Cicloeximida/toxicidade , Genoma/efeitos dos fármacos , Glutationa/deficiência , Hipocampo/citologia , Ferro/toxicidade , Estresse Oxidativo/genética , Inibidores da Síntese de Proteínas/toxicidade , Ratos
16.
Neurochem Int ; 42(3): 251-60, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12427479

RESUMO

To evaluate the involvement of AMPA receptor activation in neuronal cell death and survival, rat hippocampal neurons in culture were treated with AMPA receptor antagonists. A 46 h treatment with 6,7-dinitroquinoxaline-2,3-dione (DNQX), added 2 h after cell plating, induces a dose-dependent neurotoxicity. Similar effects are also observed in more mature hippocampal neurons (treatment at 14 days in vitro). DNQX toxic effect is neuron-specific since cultured hippocampal glial cells are unaffected. Attempts to characterise the site of action of DNQX suggest that ionotropic glutamate receptors would not be implicated. Indeed, (i) other AMPA receptor antagonists are either ineffective or only moderately efficient in mimicking DNQX effects; (ii) AMPA alone or in the presence of cyclothiazide, as well as, other AMPA receptor agonists, do not reverse DNQX action; (iii) DNQX neurotoxicity is not likely to involve blockade of NMDA receptor glycine site, since this effect is neither mimicked by 7-chlorokynurenate nor reversed by D-serine. Thus, DNQX toxicity in cultured hippocampal neurons is apparently mediated through an ionotropic glutamate receptor-independent way.


Assuntos
Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Quinoxalinas/toxicidade , Receptores de AMPA/metabolismo , Animais , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores
17.
Neurochem Int ; 45(7): 1113-23, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15337311

RESUMO

Glutamate extracellular levels are regulated by specific transporters. Five subtypes have been identified. The two major ones, GLAST and GLT (glutamate transporters 1 and 2, respectively), are localized in astroglia in normal mature brain. However, in neuron-enriched hippocampal cultures, these proteins are expressed in neurons during the early in vitro development (Plachez et al., 2000). Here, we show that, in these cultures, GLAST and GLT neuronal expression is transient and no longer observed after 7 days in vitro, a stage at which the few astrocytes present in the culture are maturing. Moreover, we demonstrate that these few astrocytes are responsible for the repression of this neuronal expression. Indeed, addition of conditioned medium prepared from primary cultures of hippocampal astrocytes, to cultured hippocampal neurons, rapidly leads to the suppression of neuronal GLAST expression, without affecting neuronal GLT expression. However, when neurons are seeded and co-cultured on a layer of hippocampal astrocytes, they do not develop any immunoreactivity towards GLAST or GLT antibodies. Altogether, these results indicate that glia modulate the expression of GLAST and GLT glutamate transporters in neurons, via at least two distinct mechanisms. Neuronal GLAST expression is likely repressed via the release or the uptake of soluble factors by glia. The repression of neuronal GLT expression probably results from glia-neuron interactions. This further reinforces the fundamental role of direct or indirect neuron-glia interactions in the development of the central nervous system.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Hipocampo/metabolismo , Neurônios/metabolismo , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Astrócitos/citologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Embrião de Mamíferos , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/citologia , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
18.
PLoS One ; 9(9): e106302, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184226

RESUMO

Maternal inflammation during pregnancy is associated with the later development of cognitive and behavioral impairment in the offspring, reminiscent of the traits of schizophrenia or autism spectrum disorders. Hippocampal long-term potentiation and long-term depression of glutamatergic synapses are respectively involved in memory formation and consolidation. In male rats, maternal inflammation with lipopolysaccharide (LPS) led to a premature loss of long-term depression, occurring between 12 and 25 postnatal days instead of after the first postnatal month, and aberrant occurrence of long-term potentiation. We hypothesized this would be related to GABAergic system impairment. Sprague Dawley rats received either LPS or isotonic saline ip on gestational day 19. Male offspring's hippocampus was studied between 12 and 25 postnatal days. Morphological and functional analyses demonstrated that prenatal LPS triggered a deficit of hippocampal GABAergic interneurons, associated with presynaptic GABAergic transmission deficiency in male offspring. Increasing ambient GABA by impairing GABA reuptake with tiagabine did not interact with the low frequency-induced long-term depression in control animals but fully prevented its impairment in male offspring of LPS-challenged dams. Tiagabine furthermore prevented the aberrant occurrence of paired-pulse triggered long-term potentiation in these rats. Deficiency in GABA seems to be central to the dysregulation of synaptic plasticity observed in juvenile in utero LPS-challenged rats. Modulating GABAergic tone may be a possible therapeutic strategy at this developmental stage.


Assuntos
Neurônios GABAérgicos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Ácidos Nipecóticos/administração & dosagem , Ácido gama-Aminobutírico/metabolismo , Animais , Transtornos Globais do Desenvolvimento Infantil/tratamento farmacológico , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Transtornos Globais do Desenvolvimento Infantil/patologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Plasticidade Neuronal , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Tiagabina , Ácido gama-Aminobutírico/efeitos dos fármacos
19.
Neurochem Int ; 61(5): 632-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22819793

RESUMO

The structure of the toxin ω-agatoxin IVB, extracted from the venom of funnel-web spider Agelenopsis aperta, is an important lead structure when considering the design of modulators of synaptic transmission which largely involves P/Q-type (CaV2.1) voltage gated calcium channels (VGCC) at central synapses. Focusing on the loop 2 of the ω-agatoxin IVB that seems to be the most preeminent interacting domain of the toxin with the CaV2.1 VGCC, cyclooctapeptides mimicking this loop were synthesized. While (14)Trp is essential for the binding of the neurotoxin to the CaV2.1 VGCC, the substitution of the (12)Cys for a glycidyl residue led to a cyclooctapeptide named EP14 able to enhance CaV2.1 VGCC-associated currents measured with patch-clamp recordings and to evoke ω-agatoxin IVA-sensitive intracellular Ca(2+) increase as measured by fura-2 spectrofluoroimaging. Furthermore, this cyclooctapeptide was able to potentiate spontaneous excitatory synaptic transmission in a network of cultured hippocampal neurons, consistent with the activation of presynaptic VGCC by EP14. In addition, this peptide did not affect cell survival measured with the MTT assay. Therefore, such new cyclopeptidic structures are potential good candidates for synthesis of new agents aimed at the restoration deficient excitatory synaptic transmission.


Assuntos
Agatoxinas/síntese química , Canais de Cálcio Tipo N/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Agatoxinas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Ratos , Ratos Sprague-Dawley
20.
Free Radic Biol Med ; 51(9): 1643-55, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21843633

RESUMO

α-Tocopherol (α-TOH), a dietary component of vitamin E, is well known for its antioxidant capacity. Nevertheless, recent studies have pointed out non-anti-radical properties including cellular and genomic actions. Decreased levels of α-tocopherol in the brain are associated with neuronal dysfunctions ranging from mood disorders to neurodegeneration. All these behavioral effects of α-tocopherol deficiency probably do not rely simply on its anti-radical properties, but could also be reminiscent of a not-yet characterized neuromodulatory action. We have thus measured the direct actions of α-tocopherol and of its natural phosphate derivative, α-tocopheryl phosphate (α-TP), on synaptic transmission in rodent hippocampus. These compounds had opposite actions on both glutamatergic and GABAergic transmission: whereas α-TOH potentiated these transmissions, α-TP inhibited them. Interestingly, these effects were both mediated by cannabinoid receptors (CB1Rs), because they were blocked by the CB1R antagonist AM251. Although α-tocopherol and α-tocopheryl phosphate did not directly bind CB1R, both α-TP and CB1R agonists inhibited forskolin-evoked Erk1/2 phosphorylation in a nonadditive manner. Furthermore, both α-tocopherol and α-tocopheryl phosphate attenuated depolarization-induced suppression of excitation and CB1R agonist-mediated hypothermia. Therefore, we identify α-tocopherol as new lipid modulator of the cannabinoid system in the rodent hippocampus, i.e., a novel "non-anti-radical" action of vitamin E, which may have some preeminent impact in neuronal disorders associated with vitamin E deficiency.


Assuntos
Antioxidantes/farmacologia , Canabinoides/metabolismo , Hipocampo/efeitos dos fármacos , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/farmacologia , Animais , Antioxidantes/química , Agonistas de Receptores de Canabinoides , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Canabinoides/metabolismo , alfa-Tocoferol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA